首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf′(ξ)-f(ξ)=f(2)-2f(1).
设f(χ)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf′(ξ)-f(ξ)=f(2)-2f(1).
admin
2019-06-28
50
问题
设f(χ)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf′(ξ)-f(ξ)=f(2)-2f(1).
选项
答案
令φ(χ)=[*], 则φ(χ)在[1,2]上连续,在(1,2)内可导,且φ(1)=φ(2)=f(2)-f(1), 由罗尔定理,存在ξ∈(1,2),使得φ′(ξ)=0, 而φ′(χ)=[*], 故ξf′-f(ξ)=f(2)-2f(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/PiV4777K
0
考研数学二
相关试题推荐
23.证明:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a);
设矩阵A=,三阶矩阵B满足ABA*=E—BA-1,试计算行列式|B|。
设A为n阶矩阵(n≥2),A*为A的伴随矩阵,证明r(A*)=
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。求方程组(1)的一个基础解系;
设矩阵A=,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
设m,n均是正整数,则反常积分∫01dx的收敛性()
设非负函数y=y(x)(x≥0)满足微分方程xy"-y’+2=0,当曲线y=y(x)过原点时,其与直线x=1及y=0围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体体积。
设f(x)在[a,b]连续,且∈[a,b],总∈[a,b],使得|f(y)|≤|f(x)|.试证:∈[a,b],使得f(ξ)=0.
设A为m×n实矩阵,E为n阶单位矩阵,矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设f’(x)连续,f(0)=0,f’(0)≠0,F(x)=∫0xtf(t2-x。)dt,且当x→0时,F(x)~x,求n及f’(0).
随机试题
津液能够滋养濡润
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联
Itisa______ridefromhishometotheshoppingcenter.
在近端小管中滤出的HCO3-被重吸收的方式为
幼儿期年龄的划分应是
A.一般不引起细胞病变效应B.细胞内形成多型核巨细胞C.易发生基因重排D.主要通过血液传播E.细胞核内形成嗜酸性包涵体甲肝病毒
属于给水处理构筑物的是()。
牛顿看到成熟的苹果从树上掉下来,研究它的原因,发现了万有引力的秘密,开创了物理学的一个新时代。瓦特从水开时蒸汽顶起壶盖的现象中受到启发,发明了蒸汽机。马克思从人们每天都在进行的亿万次的商品交换中发现了现代资本主义发生、发展和灭亡的规律,为无产阶级社会主义革
一般情况下,母亲与照顾关怀相联结,而如果母亲又常常与跳舞相联结,那么跳舞就可能会成为一种()
A、 B、 C、 C
最新回复
(
0
)