首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点,且x1<x2,则至少存在一点ε,使( )。
若函数f(x)在区间(a,b)内可导,x1和x2是区间(a,b)内任意两点,且x1<x2,则至少存在一点ε,使( )。
admin
2021-07-15
43
问题
若函数f(x)在区间(a,b)内可导,x
1
和x
2
是区间(a,b)内任意两点,且x
1
<x
2
,则至少存在一点ε,使( )。
选项
A、f(b)-f(a)=f‘(ε)(b-a),其中a<ε<b
B、f(b)-f(x
1
)=f’(ε)(b-x
1
),其中x
1
<ε<b
C、f(x
2
)-f(x
1
)=f’(ε)(x
2
-x
1
),其中x
1
<ε<x
2
D、f(x
2
)-f(a)=f’(ε)(x
2
-a),其中a<ε<x
2
答案
C
解析
所给表达式皆为函数增量、自变量增量与区间内某点导数值的关系,可考虑拉格朗日中值定理。
由于拉格朗日中值定理需要函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,而题设条件只给出f(x)在(a,b)内可导,这并不能保证f(x)在[a,b]上连续,而A,B,D所给各表达式分别为f(x)在[a,b],[x
1
,b],[a,x
2
]上的拉格朗日中值定理形式,可知这三项都不符合定理条件,应排除。
由于f(x)在(a,b)内可导,可知f(x)在(a,b)内连续,又由于x
1
,x
2
∈(a,b)且x
1
<x
2
,可知f(x)在[x
1
,x
2
]上连续,在(x
1
,x
2
)内可导,即f(x)在[x
1
,x
2
]上满足拉格朗日中值定理的条件,可知C成立,故选C.
转载请注明原文地址:https://kaotiyun.com/show/Pmy4777K
0
考研数学二
相关试题推荐
[*]
A、 B、 C、 D、 D
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y22+y22
下列命题中①如果矩阵AB=E,则A可逆且A一1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
求微分方程χy′=yln的通解.
下列行列式的值为n!的是().
级数(常数α>0)()
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中
半径为2的球体盛满水,求将水从球顶部全部抽出所做的功.
设函数f(x)在(0,﹢∞)内可导,f(x)﹥0,f(π/2)=x∈(0,﹢∞)。求:(Ⅰ)f(x);(Ⅱ)定义数列xn=0nπf(t)dt,证明数列{xn}收敛。
随机试题
萃取塔开车时,应先注满连续相,后进分散相。 ()
ThemostfamousdramatistsintheRenaissanceEnglandare______,WilliamShakespeare,andBenJonson.
出纳人员可以兼任的工作是_____()
下列哪一个酶与丙酮酸生成糖无关?
X线腹平片发现肾上腺区钙化提示下列哪种疾病
8℃,P108次/分,R20次/分,BP130/80mmHg;肥胖;唇舌干燥,皮肤弹性差;无面瘫体征,颈无抵抗,双下肺可闻及湿啰音。患者经上述处理11小时后,脱水状况减轻,意识恢复。复查血钾3.3mmol/L,血钠144mmol/L,血糖14.2
在处方书写中,缩写词“qm.”代表的意思是
根据以下资料,回答下列小题。已知2012年全国能源生产总量为331848.00万吨标准煤,2011年全国能源生产总量为317987.00万吨标准煤。各种能源生产量所占比例如下图所示:2011年,天然气生产总量比原油生产总量少约()万吨标准煤。
在演出过程中,观众热烈地鼓起掌声。
辐射指的是能量在空间传播的过程。下列关于辐射的一些说法不成立的是()。
最新回复
(
0
)