首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,r(A)=1,则λ=0 ( )
已知A是3阶矩阵,r(A)=1,则λ=0 ( )
admin
2020-03-24
62
问题
已知A是3阶矩阵,r(A)=1,则λ=0 ( )
选项
A、必是A的二重特征值
B、至少是A的二重特征值
C、至多是A的二重特征值
D、一重、二重、三重特征值都可能
答案
B
解析
A是三阶矩阵,r(A)=1,r(0E—A)=1.
(0E—A)X=0有两个线性无关特征向量,故λ=0至少是二重特征值,也可能是三重,例如:A=
,r(A)=1,λ=0是三重特征值.
转载请注明原文地址:https://kaotiyun.com/show/PpD4777K
0
考研数学三
相关试题推荐
求下列隐函数的微分或导数:设由方程确定y=y(x),求y’与y".
(I)设则df|(1,1)=____________;(Ⅱ)设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1,0)=___________.
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于()
设f(x)在x=0的邻域内有定义,且f(0)=0,则f(x)在x=0处可导的充分必要条件是().
设随机变量X1,X2,…,Xn(n>1),独立同分布,且方差σ2>0,记的相关系数为()
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A
设函数f(x)在区间(-δ,δ)内有定义,若当x∈(-δ,δ)时,恒有丨f(x)丨≤x2,则x=0必是f(x)的
设函数f(x)连续,则在下列变上限积分定义的函数中,必为偶函数的是()
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于(
设y=f(x)由cos(xy)+lny-x=1确定,则=().
随机试题
TheKiltWheneverpeoplefromScotlandliveinforeigncountries,theyarealwaysasked:“IsScotlandthatplacewheremenw
有关关节囊的错误描述是()
记忆表象
谈谈共同加害行为。
在我国会计实务中,流动负债应按未来应付金额的现值入账。()
管理业务流程图中不包括的信息是()。
公安机关的职责不具有有限性。()
“虎行雪地梅花五,鹤立霜田竹叶三”中运用的修辞手法是()。
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须保存在考生文件夹下。文慧是新东方学校的人力资源培训讲师,负责对新入职的教师进行入职培训,其PowerPoint演示文稿的制作水平广受好评。最近,她应北京节水
NewZealandSeaweedCallusnotweeds;weareflowersofthesea.SectionASeaweedisaparticularlynutritiousfood,whichabs
最新回复
(
0
)