首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=[1,1,1,3]T,α2=[一1,一3,5,1]T,α3=[3,2,一1,p+2]T,α4=[一2,一6,10,p]T. p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3 ,α4 线性表出;
设向量组α1=[1,1,1,3]T,α2=[一1,一3,5,1]T,α3=[3,2,一1,p+2]T,α4=[一2,一6,10,p]T. p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3 ,α4 线性表出;
admin
2021-01-19
61
问题
设向量组α
1
=[1,1,1,3]
T
,α
2
=[一1,一3,5,1]
T
,α
3
=[3,2,一1,p+2]
T
,α
4
=[一2,一6,10,p]
T
.
p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]
T
用α
1
,α
2
,α
3
,α
4
线性表出;
选项
答案
将给定向量作为列向量组成矩阵,并对矩阵施行初等行变换化为行阶梯形.求出其极大无关组,进一步将虚线左侧的矩阵化成单位矩阵,即可写出α用α
1
,α
2
,α
3
,α
4
的线性表出. 对矩阵A=[α
1
,α
2
,α
3
,α
4
:α]作初等行变换,化为行阶梯形矩阵: [*] 显然当p一2≠0即p≠2时,对A
1
继续进行初等行变换,将其前4列化为单位向量: [*]=[β
1
,β
2
,β
3
,β
4
:β]=A
2
, 其中β
i
(i=1,2,3,4),β分别为A
1
的列向量,易看出β
1
,β
2
,β
3
,β
4
线性无关,且 β=2β
1
+[(3p一4)/(p一2)]β
2
+1·β
3
+[(1一p)/(p一2)]β
4
, 则α
1
,α
2
,α
3
,α
4
线性无关,且向量α可用α
1
,α
2
,α
3
,α
4
线性表示,即 α=2α
1
+[(3p一4)/(p一2)]α
2
+α
3
+[(1一p)/(p一2)]α
4
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Pw84777K
0
考研数学二
相关试题推荐
设()
设f(x),g(x)均有二阶连续导数且满足f(0)>0,f′(0)=0,g(0)=0,则函数u(x,y)=f(x)∫1yg(t)dt在点(0,0)处取极小值的一个充分条件是
设A是m×n矩阵,且方程组Ax=b有解,则
已知y1=e3x一xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=__________。
曲线y=(x≥0)与x轴围成的区域面积为_______
设向量组α1=线性无关,则a,b,c必满足关系式________
由曲线y=lnx与两直线y=(e+1)一x及y=0所围成平面图形的面积为________.
已知平面上三条直线的方程为l1:ax+2by+3c=0,l2:bx+2cy+3a=0.l3:cx+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
求不定积分
求不定积分
随机试题
钢的回火有哪几种?
简述我国社区教育工作评估的主要内容。
作用深度能达到深层肌肉的高频电疗法是
女,65岁。反复咳嗽、咳痰20年,喘憋伴间断下肢水肿10年。体检:BP45/90mmHg,双肺可闻及湿啰音。心电图检查见:Ⅱ、Ⅲ导联P波振幅为0.26mV;Ⅵ导联P波直立,振幅为0.2mV;P波宽度均正常。最可能的心电图诊断是
下列哪一行为不应以故意伤害罪论处?()(2012年卷二第16题)
《税收征收管理法》规定,纳税人改变或增减银行账号应当办理______。
个人住房贷款中银行的合作机构包括()。
合伙制私募基金为了吸引有限投资者参与,可以设定保底收益。()
下列音乐作品属于江南丝竹表演形式的有()。
You’vebeenworkingoutregularlyforquiteawhile,butyou’renowherenearyourfitnessgoals.Sonowit’stimeto【C1】______yo
最新回复
(
0
)