首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T. (1)求(Ⅰ)的一个基础解系; (2)a为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为 (Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T. (1)求(Ⅰ)的一个基础解系; (2)a为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解
admin
2019-05-11
62
问题
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为
(Ⅱ)的一个基础解系为η
1
=(2,-1,a+2,1)
T
,η
2
=(-1,2,4,a+8)
T
.
(1)求(Ⅰ)的一个基础解系;
(2)a为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
选项
答案
(1)把(Ⅰ)的系数矩阵用初等行变换化为简单阶梯形矩阵 [*] 得到(Ⅰ)的同解方程组 [*] 对自由未知量x
3
,x
4
赋值,得(Ⅰ)的基础解系γ
1
=(5,-3,1,0)
T
,γ
3
=(-3,2,0,1)
T
. (2)(Ⅱ)的通解为c
1
η
1
+c
2
η
2
=(2c
1
-c
2
,-c
1
+2c
2
,(a+2)c
1
+4c
2
,c
1
+(a+8)c
2
)
T
. 将它代入(Ⅰ),求出为使c
1
η
1
+c
2
η
2
也是(Ⅰ)的解(从而是(Ⅰ)和(Ⅱ)的公共解),c
1
,c
2
应满足的条件(过程略)为: [*] 于是当a+1≠0时,必须c
1
=c
2
=0,即此时公共解只有零解. 当a+1=0时,对任何c
1
,c
2
,c
1
η
1
+c
2
η
2
都是公共解.从而(Ⅰ),(Ⅱ)有公共非零解.此时它们的公共非零解也就是(Ⅱ)的非零解:c
1
η
1
+c
2
η
2
,c
1
,c
2
不全为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/PwV4777K
0
考研数学二
相关试题推荐
设f(χ)=g(a+bχ)-g(a-bχ),其中g′(a)存在,求f′(0).
求微分方程χy=χ2+y2满足条件y|χ=e=2e的特解.
求微分方程cosy-cosχsin2y=siny的通解.
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
微分方程y’’-y=ex+1的一个特解应具有形式(式中a,b为常数)().
设A为三阶实对称矩阵,α1=(m,-m,1)T是方程组AX=0的解,α2=(m,1,1-m)T是方程组(A+E)X=0的解,则m=________.
设方程组有无穷多个解,α1=为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.求|A*+3E|.
计算不定积分
求极限。
设曲线y=y(x)上点(x,y)处的切线垂直于此点与原点的连线,求曲线y=y(x)的方程.
随机试题
在双代号时标网络图中,用()来表示自由时差。
20×2年1月2日,甲公司以货币资金取得乙公司30%的股权,初始投资成本为2000万元,投资时乙公司各项可辨认资产、负债的公允价值与其账面价值相同,可辨认净资产公允价值及账面价值的总额均为7000万元。甲公司取得投资后即派人参与乙公司生产经营决策,但无法对
根据《劳动法》,劳动合同应当具备以下条款中的()。
阅读下面材料,回答问题。这是一节公开课,内容是《北大荒的秋天》。当学到“北大荒的小河”这一段时,突然有一个学生站起来问:“老师,‘明镜一样的小河’能换成‘明净的小河’吗?”我愣了一下,这个问题多少让我觉得有些突然。我没有直接说不能。于是,我给了大
下列关于信息系统基础环境的运维,说法不正确的是()。
根据《中华人民共和国未成年人保护法》所称未成年是指未满()周岁的公民。
判处无期徒刑的犯罪分子,减刑以后实际执行的刑期不能少于()。
计算曲线积分I=,其中L是以点(1,0)为中心,R为半径的圆周(R≠1),取逆时针方向.
以下哪个地址不是有效的1P地址?
Thecohesiveness(内聚力)ofafamilyseemstorelyonmemberssharingcertainroutinepracticesandevents.Foragrowingshareoft
最新回复
(
0
)