首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A的第i行、第j列的元素aij=i·j. 求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
设A是n阶矩阵,A的第i行、第j列的元素aij=i·j. 求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
admin
2018-07-26
67
问题
设A是n阶矩阵,A的第i行、第j列的元素a
ij
=i·j.
求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
选项
答案
因A
2
=(aa
T
)(aa
T
)=a(a
T
a)a
T
=(a
T
a)A=[*],故知A的特征值为0,[*]. 当λ=0时,对应的特征向量满足Ax=aa
T
x=0,因a
T
a=[*]≠0,在方程aa
T
x=0两端左边乘a
T
得 a
T
(aa
T
x)=(a
T
a)a
T
x=0,得a
T
x=0. 当a
T
x=0时,两边左边乘a,得aa
T
x=0,故方程组aa
T
x=0与a
T
x=0同解.解方程a
T
x=0,得线性无关的特征向量为 ξ
1
=(一2,1,0,…,0)
T
,ξ
2
=(一3,0,1,0,…,0)
T
,…,ξ
n-1
,=(一n,0,…,0,1)
T
, 因此对应于λ=0的特征向量为k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
,k
1
,k
2
,…,k
n-1
,为不全为零的任意常数. 又tr(A)=[*]≠0,故A有一个非零特征值λ
n
=[*] 当λ
n
=[*]=a
T
a时,由λ
n
E—A)x=(a
T
aE一aa
T
)x=0,当x=a时,有 (a
T
aE—aa
T
)a=(a
T
a)a一(aa
T
)a=(a
T
a)a一a(a
T
a)=0, 故ξ
n
=k
n
(1,2,…,n)
T
(k
n
≠0)是对应于λ
n
=[*]的特征向量, 即A有n个线性无关的特征向量,A能相似于对角阵.下同法一.
解析
转载请注明原文地址:https://kaotiyun.com/show/Pyg4777K
0
考研数学一
相关试题推荐
求曲面积分x2dydz+y2dzdx,其中∑是z=x2+y2与z=x围成的曲面,取下侧.
设总体X~N(μ,25),X1,X2,…,X100为来自总体的简单随机样本,求样本均值与总体均值之差不超过1.5的概率.
设二维随机变量(X,Y)的联合密度为f(x,y)=.(1)求c;(2)求X,Y的边缘密度,问X,Y是否独立?(3)求Z=max(X,Y)的密度.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设随机变量(X,Y)的联合密度函数为f(x,y)=(1)求P(X>2Y);(2)设Z=X+Y,求Z的概事密度函数.
早晨开始下雪,整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
求下列微分方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)3]dx;(Ⅱ)y2dx=(x+y2)dy;(Ⅲ)(3y-7x)dx+(7y-3x)dy=0;(Ⅳ)-3xy=xy2.
设A、B为n阶方阵,且对任意的λ,有|λE-A|=|λE-B|,则()
设随机变量X服从参数为λ>0的泊松分布,随机变量Y在0到X之间任取一个非负整数,试求概率P(Y=2).
设有定义在(-∞,+∞)上的函数:(A)f(x)=(B)g(x)=(C)h(x)=(D)m(x)=则(I)其中在定义域上连续的函数是____________;(II)以x=0为第二类间断点的函数是_________
随机试题
A.肥厚型心肌病B.慢性大量心包积液C.急性纤维蛋白性心包炎D.急性心包填塞E.以上均不是患者男性,38岁,胸痛2周,咳嗽时加重。查体:胸骨左缘3、4肋间可闻及搔刮样粗糙音,6天后消失。最可能的诊断为
在眼部检查中可作为诊断"黄油症"的诊断依据是:如果病人患的是胬肉攀睛,在眼部检查中最不可能出现的症状是:
痉病的治疗原则为
下列哪项不是血栓闭塞性脉管炎的发病因素
关于提取和使用职工教育培训经费的说法,正确的是()。
西方第一本以“教育心理学”命名的专著诞生于1924年。()
简述初中生个性发展的特点。
行政诉讼是由()来主持的。
我国《宪法》第36条第4款规定,我国()不受外国势力的支配
设u=f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则=______.
最新回复
(
0
)