首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,A的第i行、第j列的元素aij=i·j. 求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
设A是n阶矩阵,A的第i行、第j列的元素aij=i·j. 求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
admin
2018-07-26
56
问题
设A是n阶矩阵,A的第i行、第j列的元素a
ij
=i·j.
求A的特征值、特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
选项
答案
因A
2
=(aa
T
)(aa
T
)=a(a
T
a)a
T
=(a
T
a)A=[*],故知A的特征值为0,[*]. 当λ=0时,对应的特征向量满足Ax=aa
T
x=0,因a
T
a=[*]≠0,在方程aa
T
x=0两端左边乘a
T
得 a
T
(aa
T
x)=(a
T
a)a
T
x=0,得a
T
x=0. 当a
T
x=0时,两边左边乘a,得aa
T
x=0,故方程组aa
T
x=0与a
T
x=0同解.解方程a
T
x=0,得线性无关的特征向量为 ξ
1
=(一2,1,0,…,0)
T
,ξ
2
=(一3,0,1,0,…,0)
T
,…,ξ
n-1
,=(一n,0,…,0,1)
T
, 因此对应于λ=0的特征向量为k
1
ξ
1
+k
2
ξ
2
+…+k
n-1
ξ
n-1
,k
1
,k
2
,…,k
n-1
,为不全为零的任意常数. 又tr(A)=[*]≠0,故A有一个非零特征值λ
n
=[*] 当λ
n
=[*]=a
T
a时,由λ
n
E—A)x=(a
T
aE一aa
T
)x=0,当x=a时,有 (a
T
aE—aa
T
)a=(a
T
a)a一(aa
T
)a=(a
T
a)a一a(a
T
a)=0, 故ξ
n
=k
n
(1,2,…,n)
T
(k
n
≠0)是对应于λ
n
=[*]的特征向量, 即A有n个线性无关的特征向量,A能相似于对角阵.下同法一.
解析
转载请注明原文地址:https://kaotiyun.com/show/Pyg4777K
0
考研数学一
相关试题推荐
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
在假设检验中,H0为原假设,下列选项中犯第一类错误(弃真)的是().
设总体X~N(μ,σ2),其中σ2未知,s2=,样本容量n,则参数μ的置信度为1—α的置信区间为().
设f(x)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得。
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)+f(ξ)g’(ξ)=0.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1—ξ2—ξ3,Aξ3=2ξ1—2ξ2—ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.(1)甲、乙两人同时向目标射击,求目标被命中的概率;(2)甲、乙两人任选一人,由此人射击,目标已被击中,求是甲击中的概率.
设盲线l过点M(1,一2,0)且与两条直线l1:,垂直,则l的参数方程为___________.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
对于任意二随机变量X和Y,与命题“X和Y不相关”不等价的是
随机试题
关于小儿腹泻不正确的是
下列关于《伯尔尼公约》的说法中,错误的是()。
入芝兰之室久而不闻其香,入鲍鱼之肆久而不觉其臭,这种心理现象称为适应现象。()
药品法规定,发运中药材必须有包装。在每件包装上,必须注明
港口工程地质调查与测绘工作包括下列()项。
采用比率法进行施工成本分析,常用的比率法不包括()。
下列做法中,违背“公道”要求的是()。
在Windows中,用“创建快捷方式”创建的图标______。
Thewitch______magicontheSnowWhitesothatshe______foramonth.
【B1】【B18】
最新回复
(
0
)