首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X~N(μ,σ12),Y~N(μ,σ22),且X,Y相互独立,来自总体X,Y的样本均值为, 样本方差为S12,S22.记,求统计量的数学 期望.
设总体X~N(μ,σ12),Y~N(μ,σ22),且X,Y相互独立,来自总体X,Y的样本均值为, 样本方差为S12,S22.记,求统计量的数学 期望.
admin
2019-01-05
37
问题
设总体X~N(μ,σ
1
2
),Y~N(μ,σ
2
2
),且X,Y相互独立,来自总体X,Y的样本均值为
,
样本方差为S
1
2
,S
2
2
.记
,求统计量
的数学
期望.
选项
答案
由[*],S
1
2
,S
2
2
相互独立,可知a,b与[*]相互独立,显然a+b=1. E[*]E(U)=μ[E(a)+E(b)]=μE(a+b)=μE(1)=μ.
解析
转载请注明原文地址:https://kaotiyun.com/show/Q0W4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn,…是相互独立的随机变量序列,Xn服从参数为n(n=1,2,…)的指数分布,则下列不服从切比雪夫大数定律的随机变量序列是().
已知随机变量(X,Y)的联合密度函数为则t的二次方程t2一2Xt+Y=0有实根的概率为().
设随机变量X,Y相互独立,X在区间[0,5]上服从均匀分布,Y服从参数为1的指数分布,令Z=max{X,Y}.(1)求随机变量Z=max(X,Y)的概率密度;(2)计算P(X+Y>1).
设f(x)在[a,b]上连续,且f(x)>0,又F(x)=∫axf(t)dt+∫6x证明:(1)F’(x)≥2;(2)F(x)=0在[a,b]内有且仅有一个实根.
设随机变量X与Y相互独立,且均服从正态分布N(0,1),则().
1—sin1积分区域D如图1—4—12所示
设总体X的概率密度为为样本均值。(Ⅰ)求参数λ的矩估计量;(Ⅱ)求参数λ的最大似然估计量。
微分方程满足初始条件y(1)=1的特解是y=________。
从数集{1,2,3,4,5,6}中任意取出一个整数X,用Y表示数集中能整除X的正整数个数,试求:Y的概率分布;
(93年)n阶方阵A具有n个不同的特征值是A与对角阵相似的【】
随机试题
承受单向受力的机械上的螺杆,一般采用( )螺纹。
右半结肠癌的突出表现是
在一个完整的蛋白质合成循环中,从游离氨基酸到掺入肽链,需要消耗多少高能磷酸键
背景资料:某卫生中心由五幢大楼(门诊楼、急诊楼、住院楼等)组成,卫生中心的机电工程内容有建筑给水排水、建筑电气、通风与空调、消防工程和电梯安装工程。卫生中心还建设一个变电所、水泵房和锅炉房,机电工程的冷水机组、锅炉、变配电设备和电梯等大型设备均由业主采购
甲曾表示将赠与乙5000元,且已实际交付乙2000元,后乙在与甲之子丙的一次纠纷中,当着甲的面将丙殴成重伤。根据合同法律制度的规定,下列表述中,正确的有()。
贷款期限在()的,合同期内遇法定利率调整时,可由借贷双方按商业原则确定,可在合同期间按月、季、年调整,也可采用固定利率的确定方式。
李白对于“清真”的理解,不仅跨越了古今悠远溟漠的时空而显示出超越性,同时还表现为人物风神的清虚、灵动、潇洒、自由,艺术作品的清朗、淳真、精妙、传神。为了追求清真,李白付出毕生精力,他高呼以清真取代绮丽,一生写下了大量诗文,并以作品证实了自己的诺言。以下诗句
我国地势西高东低,大致呈阶梯状分布,通常情况下将地势分为三级阶梯。下列构成中国第二、三级阶梯分界线的选项是()。
甲将一栋楼房出租给乙,租期三年。一年后,甲向丙借款100万元,期限为一年,以该楼房作为抵押物并办妥相关抵押登记手续。借款期限届满,甲无力偿还债务,丙遂向法院起诉,要求拍卖该栋楼房以实现抵押权,并主张优先购买权。乙得知后也主张优先购买权,经评估,该栋楼房价值
ResearcherssayextravitaminEfedtoturkeysappearstohelpcontrolinfectionsfromlisteria(李氏杆菌).Peoplewhoeatfoodsthat
最新回复
(
0
)