首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积.求曲线y=y(x)的方程.
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积.求曲线y=y(x)的方程.
admin
2018-06-27
92
问题
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知
,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积.求曲线y=y(x)的方程.
选项
答案
(Ⅰ)列方程,定初值. 在[0,x]上侧面积与体积分别为2π∫
0
x
[*]∫
0
x
πy
2
dt.按题意 2π∫
0
x
y(t)[*]=π∫
0
x
y
2
(t)dt, ① y(0)=2. ② (Ⅱ)转化.将①式两边求导得2y(x)[*]=y
2
(x) (在①中令x=0,得0=0,不必另附加条件).化简得 [*] (Ⅲ)解初值问题 [*] ③式分离变量得 [*] 积分得 [*] 为解出y,两边乘 [*] 将④,⑤相加得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Q4k4777K
0
考研数学二
相关试题推荐
过原点作曲线的切线L,该切线与曲线及y轴围成平面图形n.求D绕y轴旋转一周所得旋转体体积V.
试证明:当x>0时θ(x)为单调增加函数且
设动点P(x,y)在曲线9y=4x2上运动,且坐标轴的单位长是1cm.如果P点横坐标的速率是30cm/s,则当P点经过点(3,4)时,从原点到P点间距离r的变化率是_________.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
设f(x)在[a,b]上有二.阶导数,且f’(x)>0.对(I)中的ξ∈(a,b),求
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)求曲线L与x轴所围图形绕Oy轴旋转一周所成旋转体的体积V;
设y=f(x)二阶可导,f’(x)≠0,它的反函数是x=φ(y),又f(0)=1,f’(0)=,f’’(0)=-1,则=__________.
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.求灌满容器所需时间.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
随机试题
定量预测
用甲醛进行熏蒸消毒需加入的氧化剂是
口腔医务人员使用的个人防护用品不包括
公民甲的户籍所在地为A省B县,其自1998年1月起因病到C省D市某医院就医,1999年5月出院后则前往C省E县探亲,居住了一年半,后又去C省F市工作。甲于2001年10月被公民乙提起诉讼,则公民甲民事诉讼法意义上的住所地为()
行政争议未经行政复议,由当事人直接向法院提起行政诉讼的,除法律另有规定的外,应当在知道具体行政行为之日起()内起诉。
若线性方程组无解,则λ等于()。
()是人力资源管理最为基础的工作。
民用航空承运人的责任有哪些?
小班幼儿需要能感知物体基本的空间位置与方位,理解()、里外等方位词。
Self-esteemisthecollectionofbeliefsorfeelingswehaveaboutourselves,our"self-perceptions."Howwedefineourselvesi
最新回复
(
0
)