首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n-r+1个线性无关的解.试证:它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1(其中k1+…+kn-r+1=1).
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n-r+1个线性无关的解.试证:它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1(其中k1+…+kn-r+1=1).
admin
2020-06-05
23
问题
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…,η
n-r+1
是它的n-r+1个线性无关的解.试证:它的任一解可表示为x=k
1
η
1
+…+k
n-r+1
η
n-r+1
(其中k
1
+…+k
n-r+1
=1).
选项
答案
由于 Ax=A(k
1
η
1
+…+k
n-r+1
η
n-r+1
) =k
1
Aη
1
+…+k
n-r+1
Aη
n-r+1
=(k
1
+…+k
n-r+1
)b=b 则x是原方程组的一个解. 其次,设向量β是原方程组的一个解,记向量 ξ
i
=η
i
-η
n-r+1
(i=1,2,…,n-r) 则ξ
i
是原方程组对应的齐次线性方程组Ax=0的解,且向量ξ
1
,ξ
2
,…,ξ
n-r
线性无关,于是它就是Ax=0的一个基础解系.这样向量β就可由此基础解系和原方程组的特解η
n-r+1
表示,即存在数k
1
,k
2
,…,k
n-r
,使 β=k
1
ξ
i
+…+k
n-r
ξ
n-r
+η
n-r+1
=k
1
(η
1
-η
n-r+1
)+…+k
n-r
(η
n-r
-η
n-r+1
)+η
n-r+1
=k
1
η
1
+…+k
n-r
η
n-r
+(1-k
1
-k
2
…-k
n-r
)η
n-r+1
=k
1
η
1
+…+k
n-r
η
n-r
+k
n-r+1
η
n-r+1
上式中,记k
n-r+1
=1-k
1
-k
2
…-k
n-r
,即k
1
+k
2
+…+k
n-r+1
=1.从而结论成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/Q8v4777K
0
考研数学一
相关试题推荐
设a,b为非零向量,且满足(a+3b)⊥(7a-5b),(a-4b)⊥(7a-2b),则a与b的夹角θ=()
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
微分方程y"+y=x2+1+sinx的特解形式可设为
设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设a>0为常数,则()
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
设y=y(x)是二阶线性常系数非齐次微分方程y"+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限=()
随机试题
计算
喘促,每遇情志刺激而诱发,发时突然,呼吸短促,但喉中痰声不著,气憋,胸闷而痛,咽中如窒,或失眠,心悸,苔薄,脉弦,治宜选用
内科医生王某,在春节探家的火车上遇到一位产妇临产,因车上无其他医务人员,王某遂协助产妇分娩。在分娩过程中,因牵拉过度,导致新生儿左上肢臂丛神经损伤。王某行为的性质为
A.消补兼施B.消散C.养正除积D.行气散结E.以上都不是
A、5年B、3年C、2年D、1年急诊科医师开具的盐酸肾上腺素注射液处方,在医疗机构内调剂后的保存期限为
各公用工程专业进行建设方案设计的依据是什么?
对于平原城市,机动车道路的最大纵坡宜控制在()。
业主方的项目管理包括( )。
求助者:我觉得他一定出轨了,但他死不承认,说是男女间的正常交往。我每天被这个事情搞的心力交瘁,怕一个和睦的家庭被外人给毁了。心理咨询师:我明白您的意思了。如果您愿意,我想与您的儿子和儿媳单独谈谈,您看可以吗?求助者:可以。心理咨询师:谢谢!我和您今天
“夫子循循然善诱人,博我以文,约我以礼,欲罢不能。”体现的德育原则是()。
最新回复
(
0
)