首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0. 证明:对任意a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0. 证明:对任意a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
admin
2018-09-20
80
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.
证明:对任意a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
选项
答案
令F(a)=∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1),a∈[0,1],则 F’(a)=g(a)f’(a)-f’(a)g(1)=f’(a)[g(a)一g(1)]. 因为x∈[0,1]时,f’(x)≥0,g’(x)≥0,即函数f(x),g(x)在[0,1]上单调递增,又a≤1,所以 F’(a)=f’(a)[g(a)一g(1)]≤0, 即函数F(a)在[0,1]上单调递减,又 F(1)=∫
0
1
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(1)g(1) =∫
0
1
[g(x)f(x)]’dx一f(1)g(1)=g(1)f(1)一g(0)f(0)一f(1)g(1) =一f(0)g(0)=0, 所以F(a)≥F(1)=0,即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1)≥0, 即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/QNW4777K
0
考研数学三
相关试题推荐
设随机变量X服从参数为2的指数分布,证明:Y=1一e一2X在区间(0,1)上服从均匀分布.
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:
设f(x)在[a,b]上连续可导,且f(a)=0.证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
设f’(x)在[0,1]上连续,且f(1)一f(0)=1.证明:f’2(x)dx≥1.
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:|∫01f(x)dx一
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设f(x)在(一a,a)(a>0)内连续,且f’(0)=2.证明:对0<x<a,存在0<0<1,使得∫0xf(t)dt+∫0xf(t)dt=x[f(θx)一f(一θx)];
设{un},{cn)为正项数列,证明:(1)若对一切正整数n满足cnun一cn+1un+1≤0,且发散,则un也发散;(2)若对一切正整数n满足一cn+1≥a(a>0),且收敛,则un也收敛.
设(n=1,2,…;an>0,bn>0),证明:(1)若级数bn收敛,则级数an收敛;(2)若级数an发散,则级数bn发散.
随机试题
下列病症中属阴证的是( )
经济法主体中的调控主体与规制主体是主导者,受控主体和受制主体处于完全被动地受控或受制地位。()
对农村信用社省级管理机构领导班子的日常管理和考核属于银监会的职责。()
请认真阅读下列材料,并按要求作答。简述《义务教育音乐课程标准(2011年版)》所规定的音乐课程基本理念。
关于“学习型组织”最准确的表述是()。
根据所给的图表所提供的信息进行分析、比较、计算和判断处理,回答下列题。2008年到2012年间我国进出口总额增长幅度最大的是()。
南京国民政府立法指导思想的核心是()。
如果把程序的启动对象设置为:SubMain,则SubMain过程
一个元组对应表中的是
Thecoupledecidedto______someoldfurnitureandbuyanewset.
最新回复
(
0
)