首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设P(x),Q(x),f(x)均为已知的连续函数y1,y2,y3是y"+P(x)y′+Q(x)y=f(x)的三个线性无关的特解,C1,C2为任意常数,则方程的通解为( ).
设P(x),Q(x),f(x)均为已知的连续函数y1,y2,y3是y"+P(x)y′+Q(x)y=f(x)的三个线性无关的特解,C1,C2为任意常数,则方程的通解为( ).
admin
2020-04-02
56
问题
设P(x),Q(x),f(x)均为已知的连续函数y
1
,y
2
,y
3
是y"+P(x)y′+Q(x)y=f(x)的三个线性无关的特解,C
1
,C
2
为任意常数,则方程的通解为( ).
选项
A、(C
1
-C
2
)y
1
+(C
1
+C
2
)y
2
+(1-C
2
)y
3
B、(C
1
-C
2
)y
1
+(C
2
-C
1
)y
2
+(C
1
+C
2
)y
3
C、2C
1
y
1
+(C
2
-C
1
)y
2
+(1-C
1
-C
2
)y
3
D、C
1
y
1
+(C
2
一C
1
)y
2
+(1+C
1
一C
2
)y
3
答案
C
解析
因为2C
1
y
1
+(C
2
-C
1
)y
2
+(1-C
1
-C
2
)y
3
=C
1
(2y
1
-y
2
-y
3
)+C
2
(y
2
-y
3
)+y
3
,又y
1
,y
2
,y
3
是y"+P(x)y′+Q(x)y=f(x)的三个线性无关的解,所以2y
1
-y
2
-y
3
,y
2
-y
3
分别为对应齐次方程y"+P(x)y′+Q(x)y=0的两个线性无关的解.于是C
1
(2y
1
-y
2
-y
3
)+C
2
(y
2
-y
3
)为齐次方程3y"+P(x)y′+Q(x)y=0的通解.由二阶非齐次线性微分方程解的结构可知C
1
(2y
1
-y
2
-y
3
)+C
2
(y
2
-y
3
)+y
3
为微分方程y"+P(x)y′+Q(x)y=f(x)的通解.
转载请注明原文地址:https://kaotiyun.com/show/QOS4777K
0
考研数学一
相关试题推荐
设某班车起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示在中途下车的人数。试求:二维随机变量(X,Y)的概率分布。
[2013年]已知极限,其中k,c为常数,且c≠0,则().[img][/img]
[2007年]如图所示,连续函数y=f(x)在区间[一3,一2],[2,3]上图形分别是直径为1的上、下圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是().
(2007年)如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周,设则下列结论正确的是()
(1987年)设则在x=a处
极限的充要条件是()
(1988年)设f(x)可导且则△x→0时,f(x)在x0点处的微分dy是
设幂级数在x=3条件收敛,则该幂级数收敛半径为_________.
若则
若则
随机试题
关于学习领导科学的意义,说法错误的是【】
下列对建设项目环境风险评价的工作流程的描述,顺序正确的是()。
下列有关投资的说法,错误的是()。
建立城镇职工基本医疗保险制度的原则是( )。
根据刑事诉讼法的规定,合议庭对复杂重大案件,可以提请院长决定将案件提交审判委员会讨论。合议庭提请院长将案件提交审判委员会讨论的时间应是在()。
万紫干红的奇花异卉,不仅美化着人们的生活环境,陶冶着人们的情操,而且还具有较高的药用价值。下列选项关于花卉药用价值的叙述,不正确的是()。
近年来,同家在重大建设项目招标采购等领域,__________了一系列政策,鼓励提高国产化水平,规定相关产品的“国产化率”(即国内生产率)必须达到一定指标,才能参与重大建设项目__________,并享受进口部件退税优惠。填入横线部分最恰当的一项是
Hesufferedfrom____________________.
TrustMe,I’maRobot[A]Withrobotsnowemergingfromtheirindustrialcagesandmovingintohomesandworkplaces,roboticists
Thepassagegivesageneraldescriptionofthewaystopreparefortests.Simplyscanningovertextbooksornotesisnotenough
最新回复
(
0
)