首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2007年] 如图所示,连续函数y=f(x)在区间[一3,一2],[2,3]上图形分别是直径为1的上、下圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是( ).
[2007年] 如图所示,连续函数y=f(x)在区间[一3,一2],[2,3]上图形分别是直径为1的上、下圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是( ).
admin
2019-05-06
38
问题
[2007年] 如图所示,连续函数y=f(x)在区间[一3,一2],[2,3]上图形分别是直径为1的上、下圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=∫
0
x
f(t)dt,则下列结论正确的是( ).
选项
A、F(3)=一(3/4)F(一2)
B、F(3)=(5/4)F(2)
C、F(一3)=(3/4)F(2)
D、F(一3)=一(5/4)F(一2)
答案
C
解析
由定积分的几何意义,即得到
因而F(3)=(3/4)F(2),即B不成立.又F(3)=(3π/4)F(一2),故A不成立.
显然有F(-3)=-3π/8=(3/4)×(π/2)=(3/4)F(2),D不成立.仅C入选.
转载请注明原文地址:https://kaotiyun.com/show/iC04777K
0
考研数学一
相关试题推荐
设求实对称矩阵B,使A=B2.
在R4中求一个单位向量,使它与α1=(1,1,-1,1)T,α2=(1,-1,-1,1)T,α3=(2,1,1,3)T都正交.
计算曲线积分其中L是以点(1,0)为圆心,R为半径的圆周(R≠1),取逆时针方向.
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设随机变量X的密度函数为f(x)=1/2e|x|(-∞<x<+∞).求Cov(X,|X|),问X,|X|是否不相关?
把f(x,y)dxdy写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
设向量组线性相关,但任意两个向量线性无关,求参数t.
设为两个正项级数.证明:若发散.
设f(x)=∫0tanxarctant2dt,g(x)=x-sinx,当x→0时,比较这两个无穷小的关系.
极限xyln(x2+y2)()
随机试题
关于肾区摄影的叙述,错误的是
A、沉香B、大黄C、牛膝D、何首乌E、狗脊具内涵韧皮部的是
2007年3月,取得建造师资格证书的王某受聘并注册于甲公司,2008年6月工作单位变动,变更注册于乙公司,其变更后的注册有效期截止日是()。
按照我国现行税法,一般纳税人在转让房地产时应该缴纳的税种有()。
求助者一般资料:小吴,女性,19岁,高三学生。案例介绍:求助者生活在一个普通家庭,父母都是普通的工人。求助者的学习成绩中上等,而且自己一直努力学习,父母也经常鼓励孩子好好学习,但是不像别的父母那样急切地望女成凤,让求助者不要有那么大的压力,考不考
伴随着经济转轨、政治改革、多元文化___________碰撞。传统的婚姻家庭伦理观不断受到挑战并进一步弱化,作为社会运行过程中的不和谐音,婚姻伦理___________已然成为一个___________的社会问题,给现代婚姻伦理的建设提出了严峻的考验。填入
诸侯国的国君如何用人呢?有人主张:“左右皆日不可,勿听;诸大夫皆日不可,勿听;国人皆日不可,然后察之,见不可焉,然后去之。”这种主张最终可能出自下列哪位思想家之口()。
下列说法中表明法的作用的局限性的包括()。
全面推进依法治国,必须贯彻落实党的十八大和十八届三中全会精神,深入贯彻习近平总书记:系列重要讲话精神,坚持党的领导、人民当家作主、依法治国有机统一,坚定不移走中国特色社会主义法治道路,坚决维护宪法法律权威,依法维护人民权益、维护社会公平正义、维护国家安全稳
Itisclearlystatedonthebulletinthat______throwstherubbishawayatwillwillbepunished.
最新回复
(
0
)