首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(87年)若f(χ)在(a,b)内可导且a<χ1<χ2<b,则至少存在一点ξ,使得 【 】
(87年)若f(χ)在(a,b)内可导且a<χ1<χ2<b,则至少存在一点ξ,使得 【 】
admin
2019-03-11
32
问题
(87年)若f(χ)在(a,b)内可导且a<χ
1
<χ
2
<b,则至少存在一点ξ,使得 【 】
选项
A、f(b)-f(a)=f′(ξ)(b-a) (a<ξ<b)
B、f(b)-f(χ
1
)=f′(ξ)(b-χ
1
) (χ
1
<ξ<b)
C、f(χ
2
)-f(χ
1
)=f′(ξ)(χ
2
-χ
1
) (χ
1
<ξ<χ
2
)
D、f(χ
2
)-f(a)=f′(ξ)(χ
2
-a) (a<ξ<χ
2
)
答案
C
解析
由f(χ)在(a,b)内可导知,f(χ)在[χ
1
,χ
2
]上连续,在(χ
1
,χ
2
)内可导,由拉格朗日中值定理知,存在一点ξ,使
f(χ
2
)-f(χ
1
)=f′(ξ)(χ
2
-χ
1
) χ
1
<ξ<χ
2
所以应选C.选项A、B、D均不正确.因为由f(χ)在(a,b)内可导,不能推得f(χ)在[a,b],[χ
1
,b],[a,χ
2
]上连续,故选项A、B、D选项均不满足拉格朗日中值定理条件.
转载请注明原文地址:https://kaotiyun.com/show/QkP4777K
0
考研数学三
相关试题推荐
设A为n阶方阵,秩(A)=r<n,且满足A2=2A,证明:A必相似于对角矩阵。
把第二类曲线积分化成第一类曲线积分,其中L为(1)在xOy平面上从点(0,0)沿直线到点(1,1);(2)从点(0,0)沿抛物线y=x2到点(1,1);(3)从点(0,0)沿上半圆周x2+y2=2x到点(1,1).
将三封信随机地投入编号为1,2,3,4的四个邮箱,求没有信的邮箱数X的概率函数.
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式;(3)β能用
设α1,α2,…,αs和β1β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1β2,…,βt线性无关.
设D是位于曲线y=(a>1,0≤x<+∞)下方,x轴上方的无界区域.(Ⅰ)求区域D绕x轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
设函数f(x)在区间[0,1]上具有连续导数,f(0)=1,且满足其中Dt={(x,y)|0≤x≤t,0≤y≤t一x}(0<t≤1).求f(x)的表达式.
已知随机变量X与Y相互独立且都服从参数为的0-1分布,即P{X=0}=P{X=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立.
设总体X~P(λ),则来自总体X的简单随机样本X1,X2,…,Xn的样本均值的概率分布为_________.
设A为3阶方阵,如果A-1的特征值是1,2,3,则|A|的代数余子式A11+A22+A33=_______.
随机试题
青少年好发的肿瘤为()。
Farmersareallowedtogrowsmallgardensoftheirownandtheyselltheirvegetables______theblackmarket.
如果取精液检查,应在检查前至少几天内不排精。
华支睾吸虫对人的危害主要是
关于胰岛素治疗,下列不妥的是下列哪一部位不可注射胰岛素
治疗成人呼吸窘迫综合征最有效的措施为()
《中华人民共和国广告法》规定,药品、医疗器械广告不得有的内容是()
设齐次线性方程组当方程组有非零解时,k值为:
某工业企业仅生产甲产品,采用品种法计算产品成本。3月初在产品直接材料成本130万元,直接人工成本18万元,制造费用10万元。3月份发生直接材料成本80万元,直接人工成本4871元,制造费用6万元。3月末甲产品完工100件,在产品200件。月末计算完工产品成
Translatingisacomplexandfascinatingtask.Infact,A.Richardshasclaimedthatitisprobablythemostcomplextypeofeve
最新回复
(
0
)