首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
admin
2019-02-23
28
问题
已知η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则此方程组的基础解系还可以是
选项
A、η
1
+η
2
,η
2
+η
3
,η
3
+η
4
,η
4
+η
1
.
B、η
1
,η
2
,η
3
+η
4
,η
3
-η
4
.
C、η
1
,η
2
,η
3
,η
4
的一个等价向量组.
D、η
1
,η
2
,η
3
,η
4
的一个等秩的向量组.
答案
B
解析
向量组(A)线性相关,(A)不正确.
η
1
,η
2
,η
3
,η
4
,η
1
+η
2
与η
1
,η
2
,η
3
,η
4
等价.但前者线性相关,故(C)不正确.
等秩的向量组不一定能互相线性表出,因而可能不是方程组的解,故(D)不正确.选(B).
转载请注明原文地址:https://kaotiyun.com/show/Qn04777K
0
考研数学一
相关试题推荐
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.(I)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵
因为f(x)在x=0处可导,所以f(x)在x=0处连续,从而有f(0+0)=2a=f(0)=f(0一0)=3b,[*]
设n>1,n元齐次方程组AX=0的系数矩阵为(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
求满足初始条件y"+2x(y’)2=0,y(0)=1,y’(0)=1的特解.
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T是齐次线性方程组Bx=O的解向量,求Bx=0的解空间的一个规范正交基.
问λ取何值时,齐次线性方程组,有非零解.
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且,求。
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组.则()正确.
随机试题
一段时期以来,网络上所谓政府官员的“神回复”接连出现,引发公众对官员“雷语,,现象的关注。据媒体报道,某地方官员问专家“江豚好不好吃”,当得到“不好吃”的答复时,这位官员竟说:“不好吃为什么要保护?”以下各项都是该地方官员的话所隐含的意思,除了
下列用到“赋比兴”手法的诗有()
判定级数的敛散性.
A.α-螺旋B.β-折叠C.β-转角D.三股螺旋E.无规则卷曲结构中多肽链充分伸展
Χ线胶片特性曲性的直线部是指
将衡量某疾病的原因归因于暴露某危险因素程度的最好指标是
某男性患者,50岁。自述口腔黏膜发硬半年,有嚼槟榔史。活检标本见上皮萎缩,紧接上皮下出现胶原纤维玻璃样变带,其下方胶原纤维水肿,淋巴细胞浸润。据此可诊断为()
民用建筑工程及室内装修工程的室内环境质量验收,应在工程完了至少( )d以后、工程交付使用前进行。
“只有音乐才能激起人的音乐感,对于没有音乐感的耳朵来说,最美的音乐也毫无意义。”这句话说明:
WeMustTrainPeopletoBreaktheRules[A]Layouttheentrails,readomensandauguries,studytheheavens,shakeyourhoarylo
最新回复
(
0
)