首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,已知|A|=-12,A的三个特征值之和为1,又α=(1,0,-2)T是齐次线性方程组(A*-4E)X=0的一个解向量。 (1)求矩阵A; (2)求方程组(A*+6E)X=0的通解。
设A为3阶实对称矩阵,已知|A|=-12,A的三个特征值之和为1,又α=(1,0,-2)T是齐次线性方程组(A*-4E)X=0的一个解向量。 (1)求矩阵A; (2)求方程组(A*+6E)X=0的通解。
admin
2021-04-16
142
问题
设A为3阶实对称矩阵,已知|A|=-12,A的三个特征值之和为1,又α=(1,0,-2)
T
是齐次线性方程组(A
*
-4E)X=0的一个解向量。
(1)求矩阵A;
(2)求方程组(A
*
+6E)X=0的通解。
选项
答案
(1)求出A的全部特征值和特征向量,即可确定A,由α是(A
*
-4E)x=0的解向量,知(A
*
-4E)α=0,即 A
*
α=4α,上式左乘A,得AA
*
α=4Aa,即 |A|α=4Aα,Aα=|A|α/4=-3α,所以λ
3
=-3为A的特征值,对应的一个特征向量为 α
3
=α=(1,0,-2)
T
,设A的另外两个特征值为λ
1
,λ
2
,由已知得 λ
1
+λ
2
+λ
3
=1,λ
1
λ
2
λ
3
=|A|=-12,将λ
3
=-3代入上式,解得λ
1
=λ
2
=2,设λ
1
=λ
2
=2所对应的特征向量为x=(x
1
,x
2
,x
3
)
T
,由A为实对称矩阵,得x
T
α
3
=0,即x
1
-2x
3
=0,解得一个基础解系为 α
1
=(0,1,0)
T
,α
2
=(2,0,1)
T
,由A(α
1
,α
2
,α
3
)=(λ
1
α
1
,λ
2
α
2
,λ
3
α
3
),得 A=(λ
1
α
1
,λ
2
α
2
,λ
3
α
3
)(α
1
,α
2
,α
3
)
-1
[*]。 (2)(A
*
+6E)x=0的基础解系,即为A
*
的特征值λ=-6所对应的线性无关的特征向量,而A
*
与A对应的特征向量相同,于是可利用A的特征向量来求(A
*
+6E)x=0的通解。 由(1)知,Aα
1
=2α
1
,Aα
2
=2α
2
,两式左乘A
*
,得A
*
Aα
1
=2A
*
α
1
,A
*
Aα
2
2A
*
α
2
,即A
*
α
1
=|A|α
1
/2=-6α
1
,A
*
α
2
=|A|α
2
/2=-6α
2
,移项得(A
*
+6E)α
1
=0,(A
*
+6E)α
2
=0, 所以,α
1
,α
2
是方程组(A
*
+6E)x=0的两个线性无关解向量,故通解为x=k
1
α
1
+k
2
α
2
(k
1
,k
2
为任意常数)。
解析
转载请注明原文地址:https://kaotiyun.com/show/Qpx4777K
0
考研数学三
相关试题推荐
设α,β是三维单位正交列向量,令A=αβT+βαT.证明:(1)|A|=0;(2)α+β,α一β是A的特征向量;(3)A相似于对角阵,并写出该对角阵.
设数列{an}单调增加且有上界,θ为常数,则级数(an一an+1)sinnθ()
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=2f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0。
设二次型F(x1,x2,x3)=xTAx=ax21+6x22+3x23-4x1x2-8x1x3-4x2x3,其中-2是二次型矩阵A的一个特征值。(Ⅰ)求a的值;(Ⅱ)试用正交变换将二次型f化为标准形,并写出所用的正交变换。
下列矩阵中两两相似的是
设函数f(x)∈C[a,b],且f(x)>0,D为区域a≤x≤b,a≤y≤b,证明:(b-a)2.
已知级数与广义积分e(p-2)xdx均收敛,则p的取值范围是_________.
在反常积分中收敛的是
随机试题
银团贷款中代理行的角色是()
细胞坏死的基本病变包括
左金丸中黄连作用()。
卵巢周期性变化正确的是:
婴儿化脓性脑膜炎最常见的并发症是
纳税期限是纳税人向国家缴纳税款的法定期限,确定纳税期限需要考虑的因素包括()。
甲公司是一家冰箱生产企业,为增值税一般纳税人,适用的增值税税率为13%。2×20年甲公司与职工薪酬相关的业务资料如下:(1)2×20年年初,甲公司存在一项于2×19年年初为其销售精英设定的递延年金计划:将2×18年利润的6%作为奖金,但要3年后,即2×2
不同的培训内容需要利用不同的培训方法。以下最适合态度培训的方法是()。
下列关于创新的观点,不正确的是()。
星座:天文:流星雨
最新回复
(
0
)