首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)是由方程2y3-2y2+2xy-x2=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
设y=y(x)是由方程2y3-2y2+2xy-x2=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
admin
2018-11-22
34
问题
设y=y(x)是由方程2y
3
-2y
2
+2xy-x
2
=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
选项
答案
(Ⅰ)先用隐函数求导法求出y′(x).将方程两边对x求导得 6y
2
y′-4yy′+2xy′+2y-2x=0, 整理得 y′=[*] ① (Ⅱ)由y′(x)=0及原方程确定驻点.由y′(x)=0得y=x代入原方程得 2x
3
-2x
2
+2xx-x
2
=1. 即 x
3
-x
2
+x
3
-1=0,(x-1)(2x
2
+x+1) =0. 仅有根x=1.当y=x=1时,3y
2
-2y+x≠0.因此求得驻点x=1. (Ⅲ)判定驻点是否是极值点.将①式化为(3y
2
-2y+x)y′=x-y. ② 将②式两边对x在x=1求导,注意y′(1)=0,y(1)=1,得 2y″(1)=1,y″(1)=[*]>0. 故x=1是隐函数y(x)的极小值点.
解析
转载请注明原文地址:https://kaotiyun.com/show/QsM4777K
0
考研数学一
相关试题推荐
设总体X的概率分布为其中θ(0<θ<)是未知参数,利用总体X的样本值3,1,3,0,3,1,2,3求θ的矩估计值和最大似然估计值。
已知A、B为三阶非零矩阵,且A=。β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求(Ⅰ)a,b的值;(Ⅱ)求Bx=0的通解。
设二维随机变量(X,Y)在区域G={(x,y)|1≤x+y≤2,0≤y≤1}上服从均匀分布。试求:(Ⅰ)(X,Y)的边缘概率密度fX(x)和fY(y);(Ⅱ)Z=X+Y的概率密度fZ(z)。
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
设Ω由,0≤z≤1所确定,则=_________。
幂级数n(x-1)n的和函数为_______。
设二维随机变量(X,Y)的概率密度为求:Z=2X-Y的概率密度fZ(z);
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=-1,求极限
设常数a>,f(x)=ex-ax2,则方程f(x)=0在区间(0,+∞)内的实根个数为()
设求∫f(x)dx.
随机试题
下列哪块肌肉起于翼突的外板
关于管家基因的叙述,不正确的是
演播室灯光施工中调光系统的调试的最后一步是打开所有负载的()%并保持1.5~2h,检测电源电压的波动情况,电力电缆的电流和温度,空气开关的表面温度,调光柜的运行情况及散热系统,直至调光系统所有设备全部正常工作。
文书承办工作的内容包括()
()是以招聘单位与应聘者双方补充深层次的信息为目的的面试方法。
已知求x100.
在一次拍卖中,两人竞买一幅名画,拍卖以暗标形式进行,并以最高价成交.设两人的出价相互独立且均服从[1,2]上的均匀分布,求这幅画的期望成交价.
[*]
_______(1)是系统分析阶段结束后得到的工作产品,_______(2)是系统测试阶段完成后的工作产品。(2)
Theresearchisconductedinorderto______.
最新回复
(
0
)