首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f∫abxφ(x)dx].
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f∫abxφ(x)dx].
admin
2018-05-25
82
问题
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫
a
b
φ(x)dx=1.证明:∫
a
b
f(x)φ(x)dx≥f∫
a
b
xφ(x)dx].
选项
答案
因为f’’(x)≥0,所以有f(x)≥f(x
0
)+f’(x
0
)(x-x
0
). 取x
0
=∫
a
b
xφ(x)dx,因为φ(x)≥0,所以aφ(x)≤xφ(x)≤bφ(x),又∫
a
b
φ(x)dx=1, 于是有a≤∫
a
b
xφ(x)dx=x
0
≤b. 把x
0
=∫
a
b
xφ(x)dx代入f(x)≥f(x
0
)+f’(x
0
)(x-x
0
)中,再由φ(x)≥0,得 f(x)φ(x)≥f(x
0
)φ(x)+f’(x
0
)[xφ(x)-x
0
φ(x)], 上述不等式两边再在区间[a,b]上积分,得∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
解析
转载请注明原文地址:https://kaotiyun.com/show/QsW4777K
0
考研数学三
相关试题推荐
设f(x)在x0处n阶可导,且f(m)(x0)=0(m-1,2,…,n-1),f(n)(x0)≠0(n≥2).证明:(1)当n为偶数且f(n)(x0)<0时,f(x)在x0处取得极大值;(2)当n为偶数且f(n)(x0)>>0时,f(x)在x0处取得极
设u=f(r),而r=,f(r)具有二阶连续导数,则=()
设f(x)=(1)将f(x)展开为x的幂级数;(2)分别判断级数的敛散性.
求幂级数的和函数S(x).
若f(x,y)为关于x的奇函数,且积分区域D关于y轴对称,则当f(x,y)在D上连续时,必有f(x,y)dxdy=_________.
设随机变量X与Y相互独立,且X~N(0,σ∫12),Y~N(0,σ∫22),则概率P{X-Y|<1}()
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
设X1,X2是来自总体N(0,σ2)的简单随机样本,则查表得概率等于__________.
非齐次线性方程组Ax=b中未知量的个数为n,方程个数为m,系数矩阵A的秩为r,则正确命题是
设A为4阶矩阵,A=(α1,α2,α3,α4),若Ax=0的基础解系为(1,2,-3,0)T,则下列说法中错误的是()
随机试题
下列属于原发性肾病综合征的是
男性,22岁,北方人士。反复鼻血并渐进性鼻塞2年。应首先考虑的原因是
男性,患者,56岁,农民,左下肢青筋凸出30多年,长期站立后感左下肢酸痛不适及肿胀。近4年来左小腿皮肤瘙痒、颜色发黑。左下肢浅静脉迂曲,以小腿内侧为主伴色素沉着,左足背动脉可扪及搏动。右下肢无异常。该患者需要考虑的诊断是
某银行严重违反法律规定的,从事未经批准或者未备案的业务活动,银行业监督管理机构依法责令停业整顿,还可以区别不同情形,采取下列何种措施?
综合管廊结构类型分()。
C()(次中音谱号)为大提琴、大管、长号所用。
"CanIseemybaby?"askedthehappynewmother.Whenthebabywasinherarms,shecouldn’tbelievehereyes.Thebabywasborn
Menaregenerallybetterthanwomenontestsofspatialability,suchasmentallyrotatinganobjectthroughthreedimensionsor
下面各项中除了()外,关于项目阶段和项目生命周期的说法都是正确的。
WhatisPET?TheCambridgePreliminary(预备的)EnglishTest(PET)isthesecondleveloftheCambridgeexamsinEnglishforSp
最新回复
(
0
)