首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f∫abxφ(x)dx].
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f∫abxφ(x)dx].
admin
2018-05-25
78
问题
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫
a
b
φ(x)dx=1.证明:∫
a
b
f(x)φ(x)dx≥f∫
a
b
xφ(x)dx].
选项
答案
因为f’’(x)≥0,所以有f(x)≥f(x
0
)+f’(x
0
)(x-x
0
). 取x
0
=∫
a
b
xφ(x)dx,因为φ(x)≥0,所以aφ(x)≤xφ(x)≤bφ(x),又∫
a
b
φ(x)dx=1, 于是有a≤∫
a
b
xφ(x)dx=x
0
≤b. 把x
0
=∫
a
b
xφ(x)dx代入f(x)≥f(x
0
)+f’(x
0
)(x-x
0
)中,再由φ(x)≥0,得 f(x)φ(x)≥f(x
0
)φ(x)+f’(x
0
)[xφ(x)-x
0
φ(x)], 上述不等式两边再在区间[a,b]上积分,得∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
解析
转载请注明原文地址:https://kaotiyun.com/show/QsW4777K
0
考研数学三
相关试题推荐
在第一象限的椭圆+y2=1上求一点,使过该点的法线与原点的距离最大.
极限()
zˊx(x0,y0)=0和zˊy(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
本题同样考查分段函数的复合方法.下面用解析法求解.首先,广义化为f[g(x)]=[*]由g(x)的表达式知,①当g(x)≤0时,即{2ex-1≤0}∩{x≤0}或{x2-1≤0}∩{x>0},而{2ex-1≤0}∩{x≤0}={x≤-ln2
设f(x)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f(ξ)=0.
设随机变量(X,Y)的概率密度为求Z=X+2Y的分布函数FZ(z).
设an>0,n=1,2,…,若收敛,则下列结论正确的是
试确定a和b的值,使f(x)=有无穷间断点x=0,有可去间断点x=1.
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A—E恒可逆。上述命题中,正确的个数为()
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
随机试题
下列说法不正确的是()
为研究饮用水中微囊藻毒素与大肠癌发病的关系,有人对某地8个镇居民饮用水中微囊藻毒素浓度进行检测,以此作为环境暴露水平,同时收集近年来当地大肠癌发病率数据,以此作为疾病指标,然后对两种指标进行等级相关分析,这种研究方法属于
风险控制的措施不包括()。
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和(2)单独不充分,但条件(1)和条件(2)联合起来充分。D.条件(1)充分,条件(2)充分。E.条件(1)和(2)单独都
TheEarth’sdailyclock,measuredinasinglerevolution,istwenty-fourhours.Thehumanclock,【B1】______,isactuallyabouttw
以下______功能不是数据链路层需要实现的。
ItookanEnglishbookwithme______IcouldreaditwhenIwasfree.
CompletethenotesinNOMORETHANTHREEWORDS.ThesubjectstakenInthefirstsemesterinthiscoursearepsychology,sociolog
A、TogiveanexampleofabadreactiontopenicillinB、ToshowhowpenicillinhaschangedovertheyearsC、Toemphasizetheimpo
Theprocessofacquiringtheself-disciplineforJapanesebeginsinchildhood.Indeed,onemaysayitbeginsatbirth—howearly
最新回复
(
0
)