首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. 求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. 求方程f(x1,x2,x3)=0的解.
admin
2016-01-11
90
问题
已知二次型f(x
1
,x
2
,x
3
)=(1一a)x
1
2
+(1一a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
在正交变换x=Qy下,f(x
1
,x
2
,x
3
)=0 化成2y
1
2
+2y
2
2
=0,解之得y
1
=y
2
=0,从而[*]
解析
本题考查二次型矩阵的相关性质,用正交变换化二次型为标准形以及使该二次型为0的向量.由r(A)=2,则|A|=0,确定参数s.用正交变换化二次型为标准形的常规方法求正交变换;把f化为标准形后可求f(x
1
,x
2
,x
3
)=0的解.
转载请注明原文地址:https://kaotiyun.com/show/Qv34777K
0
考研数学二
相关试题推荐
设A是m×n阶矩阵,B为s×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是().
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为k1求Aβ.
设方程组为矩阵A的分别属于特征值λ11,λ2=-2,λ3=-1的特征向量.(1)求A;(2)求|A*+3E|.
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.(Ⅰ)问p和q何值时,S达到最大值?(Ⅱ)求出此最大值.
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求一个可逆线性变换x=Pz化f为规范形.
设函数f(x)是以T为周期的连续函数.(Ⅰ)证明:∫0x(t)dt可以表示成一个以T为周期的连续函数与kx之和,并求常数k;(Ⅱ)计算∫0xf(t)dt.
设Aij为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B.求可逆矩阵P,使得PTAP=B.
设当x→0时,是等价的无穷小,则常数a=__________.
随机试题
“蛋白尿”是指24小时尿液中蛋白质含量超过
猫泛白细胞减少症的病原是
A.副作用B.抗菌药后效应C.毒性反应D.过敏反应E.后遗效应青霉素引起的主要不良反应为
过敏性紫癜哪种类型病情最为严重
荆芥的功效是()。
甲房地产经纪机构在所在城市较有实力。该机构2009年参与交易的多数二手住宅价格上升,小部分二手住宅价格下降。经该机构调查,该市2009年初二手住宅销售均价为3150元/m2,月平均租金为21元/m2。该市经济和房地产市场发展良好。李某通过该机构购买了一套二
某企业生产大米,包装标准是每包大米100斤。假定每包大米的重量服从正态分布,且标准差为2,则在95.45%的包装中大米重量的取值范围是()。
最早提出普及初等义务教育的历史时期是在()。
某商品进价240元,8折销售后还可获利40元,则原销售价的加价率为()。
A、Don’tmentionit.B、Let’sgo.C、Okay.C
最新回复
(
0
)