首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. 求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. 求方程f(x1,x2,x3)=0的解.
admin
2016-01-11
65
问题
已知二次型f(x
1
,x
2
,x
3
)=(1一a)x
1
2
+(1一a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
在正交变换x=Qy下,f(x
1
,x
2
,x
3
)=0 化成2y
1
2
+2y
2
2
=0,解之得y
1
=y
2
=0,从而[*]
解析
本题考查二次型矩阵的相关性质,用正交变换化二次型为标准形以及使该二次型为0的向量.由r(A)=2,则|A|=0,确定参数s.用正交变换化二次型为标准形的常规方法求正交变换;把f化为标准形后可求f(x
1
,x
2
,x
3
)=0的解.
转载请注明原文地址:https://kaotiyun.com/show/Qv34777K
0
考研数学二
相关试题推荐
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ1-2ξ2-ξ3,(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设齐次线性方程组时XTAX的最大值.
设函数f(x)在区间[0,4]上连续,且=0,求证:存在ξε(0,4)使得f(ξ)+f(4-ξ)=0。
已知连续函数f(x)满足条件,求f(x).
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中2α1一α2=[0,2,2,2]T,α1+α2+α3=[4,一1,2,3]T,2α2+α3=[5,一1,0,1]T,秩(A)=2,那么方程组AX=b的通解是__________.
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求一个可逆线性变换x=Pz化f为规范形.
设Aij为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B.求正交变换x=Qy将二次型f(x1,x2,x3)化为标准形;
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).若α=(1,2,-1)T,求Aα;
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求正交变换x=Qy,将二次型f(x1,x2,x3)=xTAx化为标准形;
随机试题
一国发生通货膨胀时,银行创造条件把活期存款货币转化为定期存款货币的目的是()。
词是诗歌的一种,最初是配合音乐来歌唱的;因其句子长短不一,也称“________”。
放射性131I治疗甲亢,应至少观察多长时间才能确定是否进行第二次治疗
甲房地产开发公司(以下简称甲公司)开发了一个住宅小区。为促进住宅销售,甲公司制作了功能楼书和形象楼书,并租用路边广告牌进行宣传。李某希望购买一套距离上班地点较近的商品住房,由于该住宅小区四周交通便利,李某与甲公司签订了《房地产认购协议书》,拟购买一套建筑面
最终结算是指(),对承包商完成全部工作价值的详细结算,以及根据合同条件对应付给承包商的其他费用进行核实,确定合同的最终价格。
对于设备的有形和无形磨损,下列说法错误的是()。
班主任在班级管理中的领导影响力主要表现在()。
Theschoolhasmadeitarulethatnostudentshalltakeanillegalvehicle_____________aschoolbus.
根据以下资料,回答下列问题。2017年4月,B市实现外贸进出口总额2532.10亿元,比去年同月增长17.8%。其中,出口989.98亿元.增长7.6%;进口1542.12亿元,增长25.4%。1--4月,本市累计实现外贸进出口总额10043.66亿元,
在试误学习的过程中,学习者对刺激情境作出特定的反应之后能够获得满意的结果时,联结力量就会增加,这符合的学习规律是
最新回复
(
0
)