首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. 求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2. 求方程f(x1,x2,x3)=0的解.
admin
2016-01-11
86
问题
已知二次型f(x
1
,x
2
,x
3
)=(1一a)x
1
2
+(1一a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
在正交变换x=Qy下,f(x
1
,x
2
,x
3
)=0 化成2y
1
2
+2y
2
2
=0,解之得y
1
=y
2
=0,从而[*]
解析
本题考查二次型矩阵的相关性质,用正交变换化二次型为标准形以及使该二次型为0的向量.由r(A)=2,则|A|=0,确定参数s.用正交变换化二次型为标准形的常规方法求正交变换;把f化为标准形后可求f(x
1
,x
2
,x
3
)=0的解.
转载请注明原文地址:https://kaotiyun.com/show/Qv34777K
0
考研数学二
相关试题推荐
设A是m×n阶矩阵,B为s×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是().
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为k1求Aβ.
设A=求a,b及正交矩阵P,使得PTAP=B.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ1-2ξ2-ξ3,(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设A=方程组AX=β有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交矩阵Q。使得QTAQ为对角阵.
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
f=(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2-2A=0,该二次型的规范形为________.
设函数f(x)在[0,1]上连续,(0,1)内可导,且证明在(0,1)内存在一点,使fˊ(c)=0.
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求a,b,c的值;
随机试题
T1WI上:①水肿,②脂肪,③新鲜出血,信号强度从高到低,依次排列为
在等容舒张期,心脏瓣膜的状态是【】
A.子宫颈已达处女膜缘,但未超出B.宫颈及宫体全部脱出阴道口外C.宫颈外口距处女膜缘小于4cm,但未达处女膜缘D.宫颈已脱出阴道口,但宫体仍在阴道内E.宫颈及部分宫体脱出阴道口
可与花椒、山苍子油等共贮而达到养护作用的是
A.盐酸普萘洛尔B.氯贝丁酯C.硝苯地平D.甲基多巴E.卡托普利影响肾素一血管紧张素一醛固酮系统的降压药是()。
工作A的LF为()。单代号网络计划的自由时差等于()。
住宅室内装饰装修超过设计标准或者规范增加楼面荷载的,应当经()提出设计方案。
分析下述论证中存在的缺陷和漏洞。选择若干要点。写一篇600字左右的文章,对该论证的有效性进行分析和评论。有一分析报告说:过去3年,金盾保安公司的500家客户。平均每年有4家对该公司的服务写了投诉信。由此推出只有约1%的客户对该公司服务不满,绝大多
父母没有预料到孩子的问题这样难回答。
A、Heisnotsatisfiedwiththepay.B、Heisnotabletoenjoypaidholidays.C、Thejobisnotverychallengingforhim.D、There
最新回复
(
0
)