首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx。 (Ⅱ)计算∫02πdx。
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx。 (Ⅱ)计算∫02πdx。
admin
2018-01-30
34
问题
(I)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫
a
a+l
f(x)dx=∫
0
l
f(x)dx。
(Ⅱ)计算∫
0
2π
dx。
选项
答案
(I)证明: 必要性: 设φ(a)=∫
a
a+l
f(x)dx一∫
0
l
f(x)dx,由题设 φ
’
(a)=f(a+l)一f(a)=0, 则φ(a)=c(常数)。 设a=0,则c=φ(0)=0,那么∫
a
a+l
f(x)dx=∫
0
l
f(x)dx。 充分性: 在∫
a
a+l
f(x)dx=∫
0
l
f(x)dx两边对a求导,得f(a+l)一f(a)=0,故f(x)以l为周期。 (Ⅱ)利用上述性质,将原区间变换成对称区间,从而利于使用函数的奇偶性,于是 [*] 在上式第2项中作变量替换x=π一t,即可化为第1项,故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/RGk4777K
0
考研数学二
相关试题推荐
[*]
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
求下列隐函数的导数(其中,a,b为常数):(1)x2+y2-xy=1(2)y2-2axy+b=0(3)y=x+lny(4)y=1+xey(5)arcsiny=ex+y
证明曲线y=x4-3x2+7x-10在x=1与x=2之间至少与x轴有—个交点.
设一机器在任意时刻以常数比率贬值.若机器全新时价值10000元,5年末价值6000元,求其在出厂20年末的价值.
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
设试求:函数f(a)的值域.
设f(x)在[一π,π]上连续,且有f(x)=+∫-ππf(x)sinxdx,求f(x)。
随机试题
切断实心工件时,切断刀主切削刃必须装得()工件轴线。
A.系膜区及基底膜下有沉积物B.基底膜和脏层上皮细胞间有驼峰状沉积物C.基底膜和脏层上皮细胞间有小丘状沉积物使基底膜钉突状增厚D.肾小球内无沉积物弥漫性膜性肾小球肾炎
大型或复杂工业项目的建设方案设计的内容包括()。
某企业高级工人的工资性补贴标准分别为:部分补贴按年发放,标准为5600元/年,部分按月发放,标准680元/月;某项补贴按工作日发放,标准为22元/日。已知全年日历天数为365天,设法定假日为117天,则该工人工日单价中,工资性补贴为()元。
下列关于无机结合料稳定基层的适用范围,叙述正确的有()。
因继承遗产纠纷提起的诉讼,可由()人民法院管辖。
理查德•比特纳把美国次贷危机中的借款人描述为“信用状况一塌糊涂,收入微薄,工作时有时无,没有租房史,也没有储蓄维持生活”。银行把钱贷给这样一些人显然是不可行的,政府监管也是不得力的。但美国社会为什么会有这么多穷人,或如此庞大的弱势群体?以上文字的主旨最可
计算
life-stylesandresponsibilities
浪费
最新回复
(
0
)