首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE—A)(bE—A)=O且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE—A)(bE—A)=O且a≠b.证明:A可对角化.
admin
2016-09-30
42
问题
设n阶矩阵A满足(aE—A)(bE—A)=O且a≠b.证明:A可对角化.
选项
答案
由(aE一A)(bE一A)=O,得|aE—A|.|bE一A|=0,则|aE—A|=0或者 |bE—A|=0.又由(aE一A)(bE一A)=O,得r(aE—A)+r(bE—A)≤n. 同时r(aE—A)+r(bE—A)≥r[(aE—A)一(bE—A)]=r[(a一b)E]=n. 所以r(aE—A)+r(bE一A)=n. (1)若|aE—A|≠0,则r(aE—A)=n,所以r(bE一A)=0,故A=bE. (2)若|bE一A|≠0,则r(bE一A)=n,所以r(aE—A)=0,故A=aE. (3)若|aE—A|=0且|bE一A|=0,则a,b都是矩阵A的特征值. 方程组(aE一A)X=0的基础解系含有n一r(aE—A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n一r(aE—A)个; 方程组(bE一A)X=0的基础解系含有n一r(bE—A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n一r(bE一A)个. 因为n一r(aE—A)+n一r(bE一A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/RKw4777K
0
考研数学一
相关试题推荐
设函数fi(x)(i=1,2)具有二阶连续导数,且f”i(x0)<0(i=1,2).若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有(
已知曲线L的极坐标方程为r=sin3θ(0≤θ≤π/3),则L围成的有界区域的面积为________.
∫02dy∫y2dx=().
计算二重积分x(x+y)dxdy,其中D={(x,y)|x2+y2≤2,y≥x2}.
设函数y=y(x)是微分方程y”+y’-2y=0的解,且在x=0处y(x)取得极值3,则y(x)=________.
设函数y(x)是微分方程y’-xy=满足条件y(1)=的特解.设平面区域D={(x,y)|1≤x≤2,0≤y≤y(x)},求D绕x轴旋转一周所得旋转体的体积.
求不定积分∫e2xarctandx.
设y=y(x)(x>0)是微分方程xy’-6y=-6满足条件y()=10的解.设P为曲线y=y(x)上一点,记曲线y=y(x)在点P的法线在y轴上的截距为Ip,当Ip最小时,求点P的坐标.
求下列极限:
函数u=x2-2yz在点(1,-2,2)处的方向导数量大值为__________.
随机试题
血管性痴呆最常见的类型是
多形渗出性红斑属于一种
唐女士,孕39周,第一产程延长,第三产程出血偏多,胎盘尚未娩出。为预防产后出血,接生者立即采取的措施是
实际工程中应用较多的疏水器类型是()。
下列表述代表着马克思主义法学对法的看法的是()。
美术家:颜料:绘画
设问是否存在非单位阵的B3×3,使得AB=A.若不存在,说明理由.若存在,求出所有满足AB=A的B(B≠E).
Thehumanbeinglongsforasenseofbeingaccomplished,ofbeingabletodothings,withhishand,withhismind,withhiswill
Socialchangeismorelikelytooccurinheterogeneoussocietiesthaninhomogeneousones,simplybecausetherearemorediverse
MuchofCanada’sforestryproductiongoestowardsmakingpulpandpaper.AccordingtotheCanadianPulpandPaperAssociation,C
最新回复
(
0
)