首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE—A)(bE—A)=O且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE—A)(bE—A)=O且a≠b.证明:A可对角化.
admin
2016-09-30
33
问题
设n阶矩阵A满足(aE—A)(bE—A)=O且a≠b.证明:A可对角化.
选项
答案
由(aE一A)(bE一A)=O,得|aE—A|.|bE一A|=0,则|aE—A|=0或者 |bE—A|=0.又由(aE一A)(bE一A)=O,得r(aE—A)+r(bE—A)≤n. 同时r(aE—A)+r(bE—A)≥r[(aE—A)一(bE—A)]=r[(a一b)E]=n. 所以r(aE—A)+r(bE一A)=n. (1)若|aE—A|≠0,则r(aE—A)=n,所以r(bE一A)=0,故A=bE. (2)若|bE一A|≠0,则r(bE一A)=n,所以r(aE—A)=0,故A=aE. (3)若|aE—A|=0且|bE一A|=0,则a,b都是矩阵A的特征值. 方程组(aE一A)X=0的基础解系含有n一r(aE—A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n一r(aE—A)个; 方程组(bE一A)X=0的基础解系含有n一r(bE—A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n一r(bE一A)个. 因为n一r(aE—A)+n一r(bE一A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/RKw4777K
0
考研数学一
相关试题推荐
设函数f(x)=∫1xdt,证明:存在ξ∈(1,2),f(ξ)=(2-ξ);
设函数y(x)是微分方程2xy’-4y=2lnx-1满足条件y(1)=1/4的解,求曲线y=y(x)(1≤x≤e)的弧长.
设A为三阶矩阵,交换A的第二行和第三行,再将第二行的-1倍加到第一列,得到矩阵,则A-1的迹tr(A-1)=________.
函数f(x)=在(-∞,+∞)内().
设A是四阶矩阵,A*是A的伴随矩阵,若线性方程Ax=0的基础解系中只有2个向量,则A*的秩是().
质点P沿着以AB为直径的半圆周,从点A(1,2)运动到点B(3,4)的过程中受变力F作用(如图),F的大小等于点P与原点O之间的距离,其方向垂直于线段OP与y轴正向的夹角小于π/2,求变力F对质点P所作的功.
求极限
(2003年试题,三)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D(见图1一3—5).求D的面积A;
求空间第二型曲线积分其中L为球面x2+y2+z2=1在第1象限部分的边界线,从球心看L,L为逆时针.
求曲面x2+(y-1)2=1介于xOy平面与曲面z=(x2+y2)之间的部分的面积.
随机试题
定量分析中的马尔可夫分析可应用于()
银行存款日记账应根据有关会计凭证()
分布到眼的神经有哪些?
桥梁的设计和施工中要进行强度、刚度和稳定性的验算,这里刚度指的是( )。
城市工程管线应结合城市道路网规划,宜采用()。
分析歌曲《月之故乡》要求:写出调式调性。
已知正三棱柱ABC—A1B1C1,底面边长为1,A1A=2AB,M、N分别为CC1、AB的中点,求MN与底面所成的角.
①诗人朗诵能演绎诗歌中情绪的起伏,让听众读者更好更准确地掌握其中的情绪②在国外,诗歌朗诵非常普遍,一般都是诗人自己朗诵、解释自己的诗③随着时代变迁和人们趣味的转移,激情澎湃的马雅可夫斯基渐渐离我们远去④朗诵本身也是一种音律之歌,以人体为乐器,传诵出来
Inasense,thenewprotectionismisnotprotectionismatall,atleastnotinthetraditionalsenseoftheterm.Theoldprotec
下列不属于Diff-SerV定义的3种业务类型的是__________。
最新回复
(
0
)