首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):Ax=0和(Ⅱ):ATAx=0,必有( )
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):Ax=0和(Ⅱ):ATAx=0,必有( )
admin
2020-03-02
51
问题
设A为n阶实矩阵,A
T
是A的转置矩阵,则对于线性方程组(I):Ax=0和(Ⅱ):A
T
Ax=0,必有( )
选项
A、(Ⅱ)的解是(I)的解,(I)的解也是(Ⅱ)的解.
B、(II)的解是(I)的解,但(I)的解不是(Ⅱ)的解.
C、(I)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(I)的解.
D、(I)的解是(Ⅱ)的解,但(Ⅱ)的解不是(I)的解.
答案
A
解析
若x满足Ax=0,两端左乘A
T
,得A
T
Ax=0,故Ax=0的解都是A
T
Ax=0的解;若X满足A
T
Ax=0,两端左乘x
T
,得(x
T
A
T
)(Ax)=0,即(Ax)
T
(Ax)=0,或‖Ax‖
2
=0,得Ax=0,所以A
T
Ax=0的解也都是Ax=0的解.因此(I)与(Ⅱ)同解,只有选项(A)正确.
转载请注明原文地址:https://kaotiyun.com/show/RNS4777K
0
考研数学一
相关试题推荐
设A是三阶矩阵,其三个特征值为一,1,则|4A*+3E|=___________.
设y=ex(C1cos2x+C2sin2x)(其中C1,C2为任意常数)为某二阶线性常系数齐次微分方程的通解,则该微分方程为________.
设3阶矩阵A=,其中α,β,γ2,γ3均为3维行向量,且已知行列式|A|=18,|B|=2,则行列式|A-B|等于()
幂级数的收敛域为__________。
设y=f(x)是方程y"一2y’+4y=0的一个解,且f(x0)>0,f’(x0)=0,则函数f(x)在点x0处()
设曲线y=y(x)满足xdy+(x-2y)dx=0,且y=y(x)与直线x=1及x轴所围成的平面图形绕x轴旋转所得旋转体的体积最小,则y(x)=()
在全概率公式P(B)=P(Ai)P(B|Ai)中,除了要求条件B是任意随机事件及P(AI)>0(i=1,2,…,n)之外,我们可以将其他条件改为
设(X,Y)服从二维正态分布,则下列说法不正确的是().
[2006年]设f(x,y)与φ(x,y)均为可微函数,且φ’y(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是().
(2006年试题,二)设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是().
随机试题
网络操作系统
病人,男,63岁,糖尿病,高血脂,护士对其进行戒烟及减肥训练,这些健康教育的内容属于()。
粒细胞缺乏症为粒细胞
患者,男,58岁,因右肺中央型肺癌行右肺切除术。术后留置胸管,目前处于夹闭状态。该患者术后留置胸管的目的是
中国甲公司与日本乙公司拟共同出资设立一合营企业,双方签订了合营企业合同,该合同部分条款如下:(1)合营企业的注册资本为900万美元,其中,甲公司出资680万美元,乙公司出资220万美元。甲公司出资的主要方式是:场地使用权180万美元,机器设备300万
一般保证的保证人与债权人未约定保证期间的,法律规定的保证期间是()。
《导游人员管理条例》中的导游人员,是指依照条例的规定()。
()时期起,中国园林的组成要素都已具备。
结合材料回答问题:材料1日本奉行大陆政策,有悖于正常的国际关系准则,理不直、气不壮,需要披上一件虚伪的外衣以掩人耳目,渲染“中国威胁论”就是其主要手段。1882年,山县有朋提出,日本不存在欧洲国家入侵的可能性,中国才是日本的“外患”。他
已知反常积分=______.
最新回复
(
0
)