首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B均是n阶矩阵,且秩r(A)+r(B)<n,证明:A,B有公共的特征向量.
设A,B均是n阶矩阵,且秩r(A)+r(B)<n,证明:A,B有公共的特征向量.
admin
2016-10-20
80
问题
设A,B均是n阶矩阵,且秩r(A)+r(B)<n,证明:A,B有公共的特征向量.
选项
答案
设r(A)=r,r(B)=s,且α
1
,α
2
,…,α
n-r
是齐次方程组Ax=0的基础解系,即矩阵A关于λ=0的特征向量,β
1
,β
2
,…,β
n-s
是B关于λ=0的特征向量.那么,向量组 α
1
,α
2
,…,α
n-r
,β
1
,β
2
,…,β
n-s
必线性相关(由于n-r+n-s=n+(n-r-s)>n. 于是存在不全为零的实数k
1
,k
2
,…,k
n-r
,l
1
,l
2
,…,l
n-s
,使 k
1
α
1
+k
2
α
2
+…+k
n-r
α
n-r
+l
1
β
1
+l
2
β
2
+…+l
n-s
β
n-s
=0. 因为α
1
,α
2
,…,α
n-r
线性无关,β
1
,β
2
,…,β
n-s
线性无关,所以k
1
,k
2
,…,k
n-r
与l
1
,l
2
,…,l
n-s
必分别不全为零.令γ=k
1
α
1
+k
2
α
2
+…+k
n-r
α
n-r
=-(l
1
β
1
+l
2
β
2
+…+l
n-s
β
n-s
), 则γ≠0,从特征向量性质1知,γ既是A关于λ=0的特征向量,也是B关于λ=0的特征向量,因而A,B有公共的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/RYT4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
如果n个事件A1,A2,…,An相互独立,证明:
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
某企业为生产甲、乙两种型号的产品投入的同定成本为10000(万元).设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且这两种产品的边际成本分别为20+x/2(万元/件)与6+y(万元/件).求总产量为50件且总成本最小时甲产品的边际成本,并解
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,需求函数分别为q1=24-0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格能使其获得总利润最大?最大利润为多少?
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,X和S2分别为样本均值和样本方差.记统计量T=X-S2,则ET=___________.
随机试题
HarvardprofessorHarveyMansfieldstirredupcontroversyrecentlybycriticizingtheviolentgradeinflationathisinstitution
水平渠道冲突是指同一渠道系统各个不同层次间企业的利益冲突。
患者,男,55岁。右上腹胀痛、消瘦2个月,发热1周。查体:体温38.5℃,皮肤巩膜轻度黄染,肝肋下3.0cm,质硬,表面有结节。最有助于确诊的检查是
男,68岁,进行性排尿闲难,尿线变细,饮酒后症状加重。该患者最可能的病因是
关于LOF和ETF的区别,以下表述错误的是()。
下列不属于《中华人民共和国银行业监督管理法》明确的我国银行业监督管理目标的是()。
某公司股东发现本公司经理在经营中收受贿赂,给公司造成损失,该股东应先向监事会反映,如无结果才可以向人民法院提起诉讼。( )
《教我如何不想他》的词曲作者分别是()。
下列选项中,可以成立的表述是()。
下列叙述中正确的是
最新回复
(
0
)