首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(-∞,+∞)内连续,且证明: 若f(x)是单调减函数,则F(x)也是单调减函数。
设函数f(x)在(-∞,+∞)内连续,且证明: 若f(x)是单调减函数,则F(x)也是单调减函数。
admin
2018-12-27
53
问题
设函数f(x)在(-∞,+∞)内连续,且
证明:
若f(x)是单调减函数,则F(x)也是单调减函数。
选项
答案
方法一:欲证F(x)是单调减函数,则需证F’(x)<0或F’(x)≤0且等号仅在某些点成立。 由已知 [*] 则 [*] 因f(x)是单调减函数,t介于0与x之间,所以当x>0时f(x)-f(t)<0,故F’(x)<0;当x<0时,f(x)-f(t)>0,故F’(x)<0;当x=0时,F’(0)=0。 即x∈(-∞,+∞)时,F’(x)≤0且符号仅在x=0时成立,因此F(x)也是单调减函数。 方法二:由[*]则[*] 由积分中值定理知,存在一点ξ∈(0,x),使得[*]故 F’(x)=xf(x)-f(ξ)x=x[f(x) -f(ξ)]。 与方法一同样讨论可知F(x)是单调减函数。
解析
转载请注明原文地址:https://kaotiyun.com/show/RhM4777K
0
考研数学一
相关试题推荐
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
设A为n阶非零矩阵,存在某正整数m,使Am=O,求A的特征值,并证明A不与对角阵相似.
(06年)设总体X的概率密度为其中θ是未知参数(0<θ<1).X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数.求θ的最大似然估计.
(10年)求函数f(x)=的单调区间与极值.
(02年)已知函数y=y(x)由方程e2+6xy+x2一1=0确定,则y"(0)=________.
(07年)设函数f(x)在x=0处连续,下列命题错误的是
(16年)设有界区域Ω由平面2x+y+2z=2与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分
(16年)设函数f(x,y)满足=(2x+1)e2x-y,且f(0,y)=y+1,Lt是从点(0,0)到点(1,t)的光滑曲线.计算曲线积分I(t)=.并求I(t)的最小值.
求下列极限:(I)w=(Ⅱ)w=
设随机变量X的数学期望E(X)=μ,方差D(X)=σ2,则由切比雪夫不等式,有P(|X-μ|≥3σ}≤______.
随机试题
目前在WTO存在的单独关税区有()
Thisbirdisreallylovely,andI’veneverseen________one.
下列选项中不属于捕食的一项是()
土石坝施工中,当黏性土料含水量偏低时,主要应在()加水。
路基填土不得使用()等。
上个世纪60年代初以来,新加坡的人均预期寿命不断上升,到本世纪已超过日本,成为世界之最。与此同时,和一切发达国家一样,由于饮食中的高脂肪含量,新加坡人的心血管疾病发病率也逐年上升。从上述判定,最可能推出以下哪项结论?()
疼:哭
关于SDR,下列说法正确的是()。[南京大学2012金融硕士]
在"用户表"中有4个字段:用户名(文本型,主关键字),密码(文本型),登录次数(数字型),最近登录时间(日期/时间型)。在"登录界面"的窗体中有两个名为tUser和tPassword的文本框,一个登录按钮 Command0。进入登录界面后,用户输入用户名和
Somepeople’searsproducewaxlikebusylittlebees.Thiscanbeaproblemeventhoughearwax(耳垢)appearsto【S1】______animporta
最新回复
(
0
)