首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P-1AP=,α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是( )
已知P-1AP=,α1是矩阵A属于特征值λ=1的特征向量,α2与α3是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是( )
admin
2019-02-18
67
问题
已知P
-1
AP=
,α
1
是矩阵A属于特征值λ=1的特征向量,α
2
与α
3
是矩阵A属于特征值λ=5的特征向量,那么矩阵P不能是( )
选项
A、(α
1
,-α
2
,α
3
)
B、(α
1
,α
2
+α
3
,α
2
-2α
3
).
C、(α
1
,α
3
,α
2
)
D、(α
1
+α
2
,α
1
-α
2
,α
3
).
答案
D
解析
若P
-1
AP=∧=
,P=(α
1
,α
2
,α
3
),则有AP=P∧.即(Aα
1
,Aα
2
,Aα
3
)=(a
1
α
1
,a
2
α
2
,a
3
α
3
).
可见α
i
是矩阵A属于特征值α
i
(i=1,2,3)的特征向量,又因矩阵P可逆,因此α
1
,α
2
,α
3
线性无关.
若α是属于特征值λ的特征向量,则-α仍是属于特征值λ的特征向量,故选项A正确.
若α,β是属于特征值λ的特征向量,则2α+3β,…仍是属于特征值A的特征向量.本题中,α
2
,α
3
是属于λ=5的线性无关的特征向量,故α
2
+α
3
,α
2
-2α
3
仍是λ=5的特征向量,并且α
2
+α
3
,α
2
-α
3
线性无关,故选项B正确.
对于选项C,因为α
2
,α
3
均是λ=5的特征向量,所以α
2
与α
3
谁在前谁在后均正确.故选项C正确.
由于α
1
,α
2
是不同特征值的特征向量,因此α
1
+α
2
,α
1
-α
2
不再是矩阵A的特征向量,故选项D错误.所以应选D.
转载请注明原文地址:https://kaotiyun.com/show/RiM4777K
0
考研数学一
相关试题推荐
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则().
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
在曲线x=t,y=一t2,z=t3的所有切线中,与平面x+2y+z一4=0平行的切线有().
设X~N(1,σ2),Y~N(2,σ2)为两个相互独立的总体,X1,X2,…,Xm与Y1,Y2,…,YN分别为来自两个总体的简单样本,S12=服从________分布.
计算曲面积分x3dydz+y3dzdx+(z3+1)dxdy,其中∑为x2+y2+z2=a2(z≥0)部分的上侧.
设n阶方阵A与B相似,A2=2E,则|A+A-B-E|=______.
当x→0时,无穷小的阶数最高的是().
随机试题
下列关于营养素对基因表达调控的特点哪些是正确的()。
A.燥湿行气,温中止呕B.芳化湿浊,降逆止呕C.温胃化湿,理气止呕D.化湿行气,温中止呕草豆蔻的功效是
自我徂尔,三岁食贫。岁:
在Excel2010中,以下说法不正确的是____________。
我国的人口普查每十年进行一次,因此它是一种经常性调查方法。( )
实质性重组一般要将被并购企业()以上的资产与并购企业的资产进行置换,或双方资产合并。
行政机关的复议决定不是最终发生法律效力的决定。复议当事人对该决定不服的,可以在法定期间内向人民法院提起行政诉讼。人民法院经审理后作出的才是发生法律效力的终局决定。这体现了行政复议的()原则。
税法的基本原则不包括()。
宽带ISDN可以提供Ⅰ.可视电话Ⅱ.电子邮件Ⅲ.图文电视Ⅳ.会议电视Ⅴ.档案检索等业务。在这些业务中,属于会话型业务的有
编写如下程序:PrivateSubCommand1_Click()DimnAsIntegerDimxAsString,yAsString,sAsStringx="#"y="**"
最新回复
(
0
)