首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解。 (Ⅰ)证明方程组系数矩阵A的秩R(A)=2; (Ⅱ)求a,b的值及方程组的通解。
已知非齐次线性方程组 有3个线性无关的解。 (Ⅰ)证明方程组系数矩阵A的秩R(A)=2; (Ⅱ)求a,b的值及方程组的通解。
admin
2018-11-22
26
问题
已知非齐次线性方程组
有3个线性无关的解。
(Ⅰ)证明方程组系数矩阵A的秩R(A)=2;
(Ⅱ)求a,b的值及方程组的通解。
选项
答案
(Ⅰ)设α
1
,α
2
,α
3
是方程组Ax=β的3个线性无关的解,其中 [*] 则有A(α
1
-α
2
)=0,A(α
1
-α
3
)=0,即α
1
-α
2
,α
1
-α
3
是对应齐次线性方程组Ax=0的解,且线性无关。(否则,易推出α
1
,α
2
,α
3
线性相关,与假设矛盾。) 所以有n-R(A)≥2,即4-R(A)≥2[*]R(A)≤2。 又矩阵A中的一个2阶子式[*]=-1≠0,所以R(A)≥2。 因此R(A)=2。 (Ⅱ)对矩阵A作初等行度换,即 [*] 又R(A)=2,则 [*] 对原方程组的增广矩阵[*]作初等行变换, [*] 故原方程组的同解方程组为 [*] 选x
3
,x
4
为自由变量,则 [*] 故所求通解为x=k
1
[*]+k
2
[*],k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/RzM4777K
0
考研数学一
相关试题推荐
已知方程组有解,证明:方程组无解。
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数。(Ⅰ)证明对右半平面x>0内的任意分段光滑简单闭曲线C,有(Ⅱ)求函数φ(y)的表达式。
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3由α1,α2,α3线性表示
设A,B均为n阶实对称矩阵,若A与B合同,则()
设函数f(x)在R上具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,起点为(a,b),终点为(c,d)。记(Ⅰ)证明曲线积分,与路径L无关;(Ⅱ)当ab=cd时,求I的值。
设A,B,C是三个随机事件,P(ABC)=0,且0<P(A)C<1,则一定有()
下列反常积分收敛的是().
设幂级数an(x+1)n在x=一3处().
将f(x)=lnx展开成x-2的幂级数.
已知等边三角形△ABC的边长为1,且则a.b+b.c+c.a=()
随机试题
随机事件A与B为互不相容事件,则P(AB)=
关于胃的描述正确的是
黄疸病位在()
法律规则分为授权性规则、命令性规则和禁止性规则,其分类标准是()。
管道是由()、支吊架、仪表装置及其他附件构成,管道通过与设备连接,构成一个密闭循环系统,达到输送介质的目的。
1.背景某房地产开发公司投资建造一座高档写字楼,钢筋混凝土结构,设计项目已明确,功能布局及工程范围都已确定,业主为减少建设周期,尽快获得投资收益,施工图设计未完成时就进行了招标。(1)招标工作中了发生以下事件:1)招标文件规定本地区单位参加投标不需要
下列各项中,属于会计政策变更的有()。
根据发文单位与收文单位之间的关系,可将公文分为:上行文、下行文、平行文三类。()
简述西安事变和平解决的历史意义。
长期的外部平衡
最新回复
(
0
)