首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X1,…,Xn,Xn+1独立同分布,且P(X1=1)=p,P(X1=0)=1-p,记: Yi= (i=1,2,…,n). 求.
设随机变量X1,…,Xn,Xn+1独立同分布,且P(X1=1)=p,P(X1=0)=1-p,记: Yi= (i=1,2,…,n). 求.
admin
2018-08-30
52
问题
设随机变量X
1
,…,X
n
,X
n+1
独立同分布,且P(X
1
=1)=p,P(X
1
=0)=1-p,记:
Y
i
=
(i=1,2,…,n).
求
.
选项
答案
EY
i
=P(X
i
+X
i+1
)=P(X
i
=0,X
i+1
=1)+P(X
i
=1,X
i+1
=0)=2p(1-p),i=1,…,n ∴[*]=2np(1-p), 而E(Y
i
2
)=P(X
i
+X
i-1
=1)=2p(1-p), ∴DY
i
=E(Y
i
2
)-(EY
i
)
2
=2p(1-p)[1-2p(1-p)],i=1,2,…,n. 若l-k≥2,则Y
k
与Y
l
独立,这时cov(Y
k
,Y
l
)=0,而 E(Y
k
Y
k+1
)=P(Y
k
=1,Y
k+1
=1) =P(X
k
+X
k+1
=1,X
k-1
+X
k-2
=1)=P(X
k
=0,X
k+1
=1,X
k+2
=0)+P(X
k
=1,X
k-1
=0,X
k+2
=1) =(1-p)
2
p+p
2
(1-p)=p(1-p), ∴cov(Y
k
,Y
k+1
)=E(Y
k
,Y
k+1
)=EY
k
.EY
k-1
=p(1-p)-4p
2
(1-p)
2
, 故[*]=2np(1-p)[1-2p(1-p)]+2[*]cov(Y
k
,Y
k+1
) =2np(1-p)[1-2p(n-1)]+2(n-1)[p(1-p)-4p
2
(1-p)
2
] =2p(1-p)[2n-6np(1-p)+4p(1-p)-1].
解析
转载请注明原文地址:https://kaotiyun.com/show/SMg4777K
0
考研数学一
相关试题推荐
设函数f0(x)在(一∞,+∞)内连续,fn(x)=∫0xfn—1(t)dt(n=1,2,…).
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X一3Y的相关系数.
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求:(Ⅰ)U=XY的概率密度fU(u);(Ⅱ)V=|X—Y|的概率密度fU(v).
假设随机变量X与Y相互独立,如果X服从标准正态分布,Y的概率分布为P{Y=-1}=,求:(Ⅰ)Z=XY的概率密度fZ(z);(II)V=|X—Y|的概率密度fV(v)。
设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放人四个盒子,记X为至少有一只球的盒子的最小号码.(Ⅰ)求X的分布律;(Ⅱ)若当X=k时,随机变量Y在[0,k]上服从均匀分布,k=1,2,3,4,求P{Y≤2}.
已知袋中有3个白球2个黑球,每次从袋中任取一球,记下它的颜色再将其放回,直到记录中出现4次白球为止.试求抽取次数X的概率分布.
求下列方程的通解:(Ⅰ)y′=[sin(lnx)+cos(lnx)+a]y;(Ⅱ)xy′=+y.
已知一本书中每页印刷错误的个数X服从参数为0.2的泊松分布,写出X的概率分布,并求一页上印刷错误不多于1个的概率。
设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),y的概率分布为P{Y=0}=P{Y=1}=,记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点个数为()
随机试题
《劝掌篇》
骨盆骨折合并尿道损伤和休克时,处理顺序应是( )。
龋病最好发的牙位是
男性,44岁,门脉高压病史2年,伴有黄疸,大量腹水,血清白蛋白25g/L,病人突然出现呕血1小时,出血量大约600ml。如果该病人采用三腔管压迫止血,使用时的注意事项包括以下几方面,错误的是
A.裂片(顶裂)B.松片C.黏冲D.片重差异超限E.崩解迟缓颗粒的弹性复原率较高时,易发生()。
水泥混凝土路面纵向裂缝的预防措施有()。
甲国所得已纳税款扣除限额为( )万元。乙国所得已纳税款可扣除( )万元。
国债的利率与票面价格固定不变,认购者根据固定的利率和未来的金融市场利率走势的预期对价格进行投标的方法是()。
直角三角形ABC的斜边AB=13厘米,直角边AC=5厘米,把AC对折到AB上去与斜边相重合,点C与点E重合,折痕为AD(如图14—2),则图中阴影部分的面积为()平方厘米。
Scholarsandstudentshavealwaysbeengreattravelers.Theofficialcasefor"academicmobility"isnowoftenstatedinimpress
最新回复
(
0
)