首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
admin
2017-06-26
88
问题
设3阶方阵A的特征值λ
1
,λ
2
,λ
3
互不相同,α
1
,α
2
,α
3
依次为对应于λ
1
,λ
2
,λ
3
的特征向量,则向量组α
1
,A(α
1
+α
2
),A
2
(α
1
+α
2
+α
3
)线性无关的充分必要条件是λ
1
,λ
2
,λ
3
满足_______.
选项
答案
λ
2
λ
3
≠0
解析
λ
2
λ
3
≠0.设k
1
α
1
+k
2
A(α
1
+α
2
)+k
3
A
2
(α
1
+α
2
+α
3
)=0,由Aα
j
=λ
j
α
j
(j=1,2,3),得k
1
α
1
+k
2
(λ
1
α
1
+λ
2
α
2
)+k
3
(λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
)=0,即(k
1
+λ
1
k
2
+λ
1
2
k
3
)α
1
+(λ
2
k
2
+λ
2
2
k
3
)α
2
+(λ
3
2
k
3
)α
3
=0,因属于不同特征值的特征向量线性无关,得齐次线性方程组
故向量组α
1
,A(α
1
+α
2
),A
2
(α
1
+α
2
+α
3
)线性无关
方程组(*)只有零解
方程组(*)的系数行列式△=λ
2
λ
3
2
≠0,故所求条件为λ
2
λ
3
≠0.
转载请注明原文地址:https://kaotiyun.com/show/SNH4777K
0
考研数学三
相关试题推荐
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
现在甲工厂生产某商品,年销售量为100万件,每批生产需要增加准备费1000元,而每件商品的年库存费为0.05元.如果销售率是均匀的,且上一批售完,立即生产下一批,每批数量相同,问全年应组织几批生产使得生产准备费与库存费用之和为最小.
设总体X的概率分布为其中参数θ未知且从总体X中抽取一个容量为8的简单随机样本,其8个样本值分别是1,0,1,一1,1,1,2,1.试求:经验分布函数F8(x).
设函数y(x)在(一∞,+∞)内有二阶导数,且y’≠0,x=x(y)是Y=y(x)的反函数.求解变换后的微分方程的通解.
已知y1=xex+ex,y2=xex+e-x,y3=xex+e2x—e-x是某二阶线性非齐次微分方程的三个解,则此微分方程为___________.
已知α1=(1,3,5,一1)T,α2=(2,7,α,4)T,α3=(5,17,一1,7)T,当α=3时,证明α1,α2,α3,α4可表示任一个4维列向量.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
设f(x)连续,(A为常数),求φ’(x)并讨论φ’(x)在x=0处的连续性.
若曲线与x轴y轴及直线所围图形的面积被曲线y=asinx,y=bsinx((a>b>0)三等分,求a与b的值.
由于折旧等因素,某机器转售价格P(t)是时间t(周)的减函数,其中A是机器的最初价格,在任何时间t,机器开动就能产生的利润,则使转售出去总利润最大时机器使用的时间t=__________周.(1n2≈0.693)
随机试题
计算,其中区域D由直线y=0,y=z及x=1围成.
膜性肾炎的肾小球基本病变特征是
孕1产0,孕37+6周,不规律宫缩2天,阴道少许见红,血压130/90mmHg,宫高35cm,腹围100cm,胎心音脐左下158次/分,胎背在左侧腹触及,宫缩20秒,间隔11分,肛查宫口开指尖,OCT出现早期减速。
茧唇好发于
原发性高血压Ⅲ级眼底表现是()。
燃气储配站主要的功能不包括()
但丁、薄伽丘、达芬奇是文艺复兴的先驱者,被称为“文艺复兴三颗巨星”也称为“文艺三杰”。()
环比物价指数
Thereweretwowidelydivergentinfluencesontheearlydevelopmentofstatisticalmethods.Statisticshadamotherwhowasdedi
TheCityInonesense,wecantracealltheproblemsoftheAmericancitybacktoasinglestartingpoint:weAmericansdon
最新回复
(
0
)