首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
admin
2017-06-26
69
问题
设3阶方阵A的特征值λ
1
,λ
2
,λ
3
互不相同,α
1
,α
2
,α
3
依次为对应于λ
1
,λ
2
,λ
3
的特征向量,则向量组α
1
,A(α
1
+α
2
),A
2
(α
1
+α
2
+α
3
)线性无关的充分必要条件是λ
1
,λ
2
,λ
3
满足_______.
选项
答案
λ
2
λ
3
≠0
解析
λ
2
λ
3
≠0.设k
1
α
1
+k
2
A(α
1
+α
2
)+k
3
A
2
(α
1
+α
2
+α
3
)=0,由Aα
j
=λ
j
α
j
(j=1,2,3),得k
1
α
1
+k
2
(λ
1
α
1
+λ
2
α
2
)+k
3
(λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
)=0,即(k
1
+λ
1
k
2
+λ
1
2
k
3
)α
1
+(λ
2
k
2
+λ
2
2
k
3
)α
2
+(λ
3
2
k
3
)α
3
=0,因属于不同特征值的特征向量线性无关,得齐次线性方程组
故向量组α
1
,A(α
1
+α
2
),A
2
(α
1
+α
2
+α
3
)线性无关
方程组(*)只有零解
方程组(*)的系数行列式△=λ
2
λ
3
2
≠0,故所求条件为λ
2
λ
3
≠0.
转载请注明原文地址:https://kaotiyun.com/show/SNH4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,1]上连续,(0,1)内可导,且3∫2/31f(x)dx=f(x),证明在(0,1)内存在一点,使f’(C)=0.
将函数f(x)=ln(1-x-2x2)展开成x的幂级数,并指出其收敛区间.
[*]利用奇偶函数在对称区间上的积分性质得
下列矩阵中不能相似对角化的是
设A,B是二随机事件;随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.
求极限1/x3[((2+cosx)/3)x-1]
若曲线与x轴y轴及直线所围图形的面积被曲线y=asinx,y=bsinx((a>b>0)三等分,求a与b的值.
设某工厂生产甲、乙两种产品,当这两种产品的产量分别为q1(吨)与q2(吨)时,总收入函数为R(q1,q2)=15q1+34q2-q2-4q22一2q1q2-36(万元),设生产1吨甲产品要支付排污费1万元,生产1吨乙产品要支付排污费2万元.(Ⅰ)
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且,证明(1)中的
设连续非负函数f(x)满足f(x)f(一x)=1,则=________.
随机试题
疤痕旁肺气肿是
男,55岁。间断上腹疼痛3年。胃镜示胃小弯有一直径2cm的溃疡,活检未见癌细胞。使用H2受体阻滞剂治疗6个月溃疡仍未愈合。此时正确的治疗措施是
下列关于客运站售票用房的设计,错误的是()。
PCl3分子的空间几何构型和中心原子杂化类型分别是()。
质量相同的氢气(H)和氧气(O2),处在相同的室温下,则它们的分子平均平动动能和内能关系为:
下列会计事项在进行账务处理时应通过“资本公积”科目核算的是()。
下列各项中,哪些是郭守敬的事迹?()①写成《梦溪笔谈》②算出一年的时长为365.2425天③编成《授时历》④主持全国范围内的天文测量
材料1属于什么观点,两位哲学家的观点有什么区别,错误的实质是什么?材料3属于什么观点,错在哪里?
WhatistrueaboutAliceandPeter?
Ifpolicymakershopetomakefasterprogressinimprovingeconomicperformance,reducingpoverty,andslowing【M1】______
最新回复
(
0
)