首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C是三个随机事件,已知P(ABC)>0,则P(BC|A)=P(B|A)P(C|A)的充分必要条件是( )
设A,B,C是三个随机事件,已知P(ABC)>0,则P(BC|A)=P(B|A)P(C|A)的充分必要条件是( )
admin
2019-01-25
30
问题
设A,B,C是三个随机事件,已知P(ABC)>0,则P(BC|A)=P(B|A)P(C|A)的充分必要条件是( )
选项
A、P(B|A)=P
B、P(BC|A)=P(C|AB)。
C、P(C|AB)=P(C|A)。
D、P(B|A)=P(C|A)。
答案
C
解析
本题考查随机事件概率的基本性质。根据随机变量的相互独立性及条件概率
的性质推导公式成立的条件。
根据已知可得
因此可得P(BC|A)=P(B|A)P(C|A)=P(B|A)×P(C|AB),即P(C|A)=P(C|AB)。故本题选C。
转载请注明原文地址:https://kaotiyun.com/show/ShP4777K
0
考研数学三
相关试题推荐
求解下列微分方程:(1)ylnydx+(x一lny)dy=0.(2)y’=.
求解微分方程满足条件y(0)=0的特解.
求解微分方程+x+sin(x+y)=0.
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn—r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn—r=ξn—r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ0η
求二重积分I=(x+y)2dxdy,其中积分区域D={(x,y)|0≤ay≤x2+y2≤2ay,a>0}.
已知在微分方程y’+p(x)y=f(x)中,p(x)≥c>0,且f(x)=0.试证:微分方程的通解当x→+∞时都趋于零.
设f(x)在[a,b]上连续,在(a,b)内可导,b>a>0,f(a)≠f(b),试证:存在点ξ,η∈(a,b),使得2ηf’(ξ)=(a+b)f’(η).
设不恒为常数的函数f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(c)=f(b).其中c为(a,b)内的一点,试证:存在点ξ∈(a,b),使得f"(ξ)
若正项级数收敛,则().
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(一1)f"(x)一xf’(x)=ex一1,则下列说法正确的是
随机试题
试述市场营销道德策划的基本原则。
根植于齐鲁民间文化,将现实与幻想结合起来的当代作家是()
可安置在一个病室进行床边隔离的疾病是
腺源性感染主要来源是
内痔的主要症状是
现代法理学一般认为法律原则可以克服法律规则的僵硬性缺陷。弥补法律漏洞,保证个案正义。于法律原则在案件中的适用。下列说法哪一或哪些是正确的?()
我国南方某两车道遂道呈南北向展布,隧道最大埋深为80m;隧道全长470m,隧道进出口段的围岩为较软岩,岩体破碎,且BQ值<250。隧道洞口覆盖层较薄,有坍方、落石等危害,且有较大的偏压。遂道施工地段无有害气体。遂道采用钻爆法开挖之后,及时施作第一次衬砌。通
图4-1为某房屋基础及断面图,请依据图示尺寸求出:混凝土垫层工程量。
目前,小型企业融资难是民间借贷存在和红火的主要原因,下列政府措施有助于解决这一问题的是()。
Greatemployeesaredependable,diligent,greatleadersandgreatfollowers...theypossess【B1】______easily-defined—buthardto
最新回复
(
0
)