首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x0的邻域内三阶连续可导,且f'(x0)=f"(x0)=0,f"'(x0)>0,则下列结论正确的是( ).
设f(x)在x0的邻域内三阶连续可导,且f'(x0)=f"(x0)=0,f"'(x0)>0,则下列结论正确的是( ).
admin
2017-12-21
91
问题
设f(x)在x
0
的邻域内三阶连续可导,且f'(x
0
)=f"(x
0
)=0,f"'(x
0
)>0,则下列结论正确的是( ).
选项
A、x=x
0
为f(x)的极大值点
B、x=x
0
为f(x)的极小值点
C、(x
0
,f(x
0
))为曲线y=f(x)的拐点
D、(x
0
,f(x
0
))不是曲线y=f(x)的拐点
答案
C
解析
由极限的保号性,存在δ>0,当0<1|x-x
0
|<δ<时,
当x∈(x
0
-δ,x
0
)时,f"(x)<0;当x∈(x
0
,x
0
+δ)时,f"(x)>0,则(x
0
,f(x
0
))为曲线y=f(x)的拐点,选C.
转载请注明原文地址:https://kaotiyun.com/show/k1X4777K
0
考研数学三
相关试题推荐
设总体服从U[0,θ],X1,X2,…,Xn为总体的样本,证明:为θ的一致估计.
设f(x)在[a,b]上存在二阶导数.证明:存在ξ,η∈(a,b),使∫abf(t)dt=(b一a)3;
设f(x)在[a,b]上二阶可导,且f’(A)=f’(b)=0.证明:∈(a,b),使
求下列函数的导数:
若f(x)在x0点至少二阶可导,且=-1,则函数f(x)在x=x0处()
求下列极限.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n一中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=记X一(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设二次型f=x12+x22+x32+2αx1x2一2βx2x3+2x1x3经正交交换X=PY化成f=y22+2y32,其中X=(x1,x2,x3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β。
微分方程(x2一1)dy+(2xy一cosx)dx=0满足初始条件y(0)=1的特解为___________。
y=e2x+(1+x)ex是二阶常系数线性微分方程yˊˊ+ayˊ+βy=rex的一个特解,则α2+β2+r2=________.
随机试题
公文一般“一文一事”,但可以“一文多事”的是报告中的()。
直肠全长有两个弯曲,骶曲和会阴曲,它们弯曲的方向为()
A.IgGB.IgDC.IgMD.IgEE.IsA血清中含量最高的免疫球蛋白
某市房地产主管部门领导王大伟退休后,与其友张三、李四共同出资设立一家房地产中介公司。王大伟不想让自己的名字出现在公司股东名册上,在未告知其弟王小伟的情况下,直接持王小伟的身份证等证件,将王小伟登记为公司股东。下列哪一表述是正确的?
已知a是大于零的常数,f(x)=In(1+a-2x),则f’(0)的值应是()。
下列关于自动化仪表调试的一般规定的表述,错误的是()。
以EDI服务中心为中介的运作模式的数据交换要通过EDI服务中心来传输,从而实现多点对多点的EDI数据交换。()
青春期是指从个体开始青春发育到个体生理上全面成熟为止,这个年龄段在我国大约从()开始到17~19岁结束。
纳米技术将带来一场革命,彻底改变目前外科手术的意义。将来,外科手术不会出现手术刀,那时的手术工具是机器人,这些机器人只有原子或分子那么大。今天的膝关节置换手术也许会成为历史,纳米机器人将进入有病变的关节,帮助身体长出健康的关节。有了超级机器人和自动机械装置
Technologyissupposedtomakeourliveseasier,allowingustodothingsmorequicklyandefficiently.Buttoooftenitseemst
最新回复
(
0
)