首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2012年] 设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=. 若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).
[2012年] 设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=. 若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).
admin
2019-05-10
63
问题
[2012年] 设A为三阶矩阵,P为三阶可逆矩阵,且P
-1
AP=
.
若P=[α
1
,α
2
,α
3
],Q=[α
1
+α
2
,α
2
,α
3
],则Q
-1
AQ=( ).
选项
A、
B、
C、
D、
答案
B
解析
注意到Q的列向量为α
1
,α
2
,α
3
的线性组合,首先将Q改写为P与一数字矩阵相乘的形式,再代入Q
-1
AQ中进行运算,即可求得正确选项.
解一 因Q=[α
1
+α
2
,α
2
,α
3
]=[α
1
,α
2
,α
3
]
因而Q
-1
AQ=
,故
仅(B)入选.
解二 用初等矩阵表示,有Q=PE
12
:(1),由E
12
-1
(1)=E
12
(一1)得到
Q
-1
AQ=[PE
12
(1)]
-1
APE
12
(1)=E
12
-1
(1)P
-1
APE
12
(1)=E
12
(一1)P
-1
APE
12
(1)
=
仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/SjV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,+∞)内可导且f(0)=1,f′(χ)<f(χ)(χ>0).证明:f(χ)<eχ(χ>0).
设f(χ)二阶可导,=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
设f(χ)二阶可导,f(0)=0,且f〞(χ)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
证明:用二重积分证明
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=,Q=.(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设α1,α2,…,αs为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αs线性无关.
计算行列式
随机试题
胆碱酯酶复活剂对各类有机磷杀虫药中毒的疗效不尽相同,对下列哪项中毒无效
市政公用工程施工项目质量计划应由( )主持编制。
保险业是集风险性和( )于一体的行业。
()是正当竞争的基础。
2017年1月1日,某股份有限公司资产负债表中股东权益各项目年初余额为股本3000万元,资本公积4000万元,盈余公积400万元,未分配利润2000万元。2017年公司发生相关业务资料如下:(1)经股东大会批准,宣告发放2016年度现金股利150
某机构投资者对已在上海证券交易所上市的A公司进行调研时,发现A公司如下信息:(1)甲为A公司的实际控制人,通过B公司持有A公司34%的股份。甲担任A公司的董事长、法定代表人。2009年8月7日,经董事会决议(甲回避表决),A公司为B公司向C银行借
根据《中华人民共和国突发事件应对法》的规定,社会安全事件发生后,下列关于公安机关可以采取的应急处置措施说法不正确的是()。(2018年北京.单选47)
死刑缓期二年执行期满,减为15年以上n)年以下有期徒刑的条件是( )。
下列关于输入流类成员函数getline()的叙述中,错误的是
Lifeinthetwentiethcenturydemands【B1】______.Today,all【B2】______inacountrymusthaveadequate【B3】______topreparethemfo
最新回复
(
0
)