首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2012年] 设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=. 若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).
[2012年] 设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=. 若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).
admin
2019-05-10
45
问题
[2012年] 设A为三阶矩阵,P为三阶可逆矩阵,且P
-1
AP=
.
若P=[α
1
,α
2
,α
3
],Q=[α
1
+α
2
,α
2
,α
3
],则Q
-1
AQ=( ).
选项
A、
B、
C、
D、
答案
B
解析
注意到Q的列向量为α
1
,α
2
,α
3
的线性组合,首先将Q改写为P与一数字矩阵相乘的形式,再代入Q
-1
AQ中进行运算,即可求得正确选项.
解一 因Q=[α
1
+α
2
,α
2
,α
3
]=[α
1
,α
2
,α
3
]
因而Q
-1
AQ=
,故
仅(B)入选.
解二 用初等矩阵表示,有Q=PE
12
:(1),由E
12
-1
(1)=E
12
(一1)得到
Q
-1
AQ=[PE
12
(1)]
-1
APE
12
(1)=E
12
-1
(1)P
-1
APE
12
(1)=E
12
(一1)P
-1
APE
12
(1)
=
仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/SjV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上连续,且f〞(χ)>0,对任意的χ1,χ2∈[a,b]及0<λ<1,证明:f[λχ1+(1-λ)χ2]≤λf(χ1)+(1-λ)f(χ2).
设f(χ)二阶可导,f(0)=0,且f〞(χ)>0.证明:对任意的a>0,b>0,有f(a+b)>f(a)+f(b).
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
矩阵的非零特征值是a3=_______.
设α1,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
设三阶矩阵A的特征值为2,3,λ。若行列式|2A|=一48,则λ=________。
设A=,计算行列式|A|.
随机试题
下列财产中可以作为遗产的是()
短期饥饿时体内不会出现的代谢变化是
关于计算工程量程序统筹图的说法,正确的是()。[2012年真题]
以下属于无损检测法的检测方法有()。
以下关于企业自由现金流量的计算公式中,错误的是()。
对大气环境和人类健康影响最大的内燃机有害排放物有()。
下列因素中,与经济增长率成反比关系的是()。
在三棱锥O-ABC中,若OA,OB,OC两两垂直,且OA=OB=OC=1,则点D到平面ABC的距离为()。
Inmostculturesthroughouttheworld,thereisanexpectationthatwhenapersonreachesadulthood,marriageshouldsoonfollow
A、Heartdiseasecausedbyhighbloodpressure.B、Healthproblemsassociatedwithpollution.C、Leadingriskfactorsforheartdis
最新回复
(
0
)