首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2. (1)求a的值; (2)求正交变换χ=Qy,把f(χ1,χ2,χ3)化为标准形; (3)求方程f(χ1,χ2,χ3)=0
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2. (1)求a的值; (2)求正交变换χ=Qy,把f(χ1,χ2,χ3)化为标准形; (3)求方程f(χ1,χ2,χ3)=0
admin
2017-08-28
50
问题
已知二次型f(χ
1
,χ
2
,χ
3
)=(1-a)χ
1
2
+(1-a)χ
2
2
+2χ
3
2
+2(1+a)χ
1
χ
2
的秩为2.
(1)求a的值;
(2)求正交变换χ=Qy,把f(χ
1
,χ
2
,χ
3
)化为标准形;
(3)求方程f(χ
1
,χ
2
,χ
3
)=0的解.
选项
答案
(1)二次型矩阵A=[*]二次型的秩为2,则二次型矩阵A的秩也为2,从而 [*] 因此a=0. (2)由(1)中结论a=0。则A=[*],由特征多项式 |λE-A|=[*]=(λ-2)[(λ-1)
2
-1]=λ(λ-2)
2
, 得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0. 当λ=2,由(2E-A)χ=0,系数矩阵[*],得特征向量α
1
=(1,1, 0)
T
,α
2
=(0,0,1)
T
. 当λ=0,由(0E-A)χ=0,系数矩阵[*],得特征向量α
3
=(1, -1,0)
T
. 容易看出α
1
,α
2
,α
3
已两两正交,故只需将它们单位化: γ
1
=[*](1,1,0)
T
,γ
2
=(0,0,1)
T
,γ
3
=[*](1,-1,0)
T
那么令Q=(γ
1
,γ
2
,γ
3
)=[*],则在正交变换χ=Qy下,二次型f(χ
1
,χ
2
,χ
3
)化为标准形 f(χ
1
,χ
2
,χ
3
)=χ
T
Aχ=y
T
∧y=2y
1
2
+2y
2
2
. (3)由f(χ
1
,χ
2
,χ
3
)=χ
1
2
+χ
2
2
+2χ
3
2
+2χ
1
χ
2
=(χ
1
+χ
2
)
2
+2χ
3
2
=0, 得[*] 所以方程f(χ
1
,χ
2
,χ
3
)=0的通解为:k(1,-1,0)
T
其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Snr4777K
0
考研数学一
相关试题推荐
设,则f(2013)(0)=______.
设z=z(x,y)是由方程z+e2x=x2y所确定,则=__________.
设y=y(x)是由方程y3+xy+x2一2x+1=0确定并且满足y(1)=0的函数,则=_________.
本题考查定积分的性质和定积分的计算,由于是对称区间上的定积分,一般利用奇函数,偶函数在对称区间上积分性质简化计算,本题还用到了华里士公式.[*]
设f(x)在[一a,a](a>0)上有四阶连续的导数,存在.写出f(x)的带拉格朗日余项的马克劳林公式;
A,B是n阶方阵,则下列公式正确的是()
求不定积分∫(arcsinx)2dx3.
设随机变量X~U[一1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
设f′(x)=arcsin(x-1)2,f(0)=0,求f(x)dx.
随机试题
A.麻醉药品B.一类精神药品C.二类精神药品D.处方药E.非处方药专用处方保存三年备查的药品是
(2010年)百年一遇的洪水,是指()。
协调处理现场周围的保护工作是( )的义务。
计算单位工程的工程量应按( )计算。
秦先生目前在某咨询公司任项目经理,月薪税前1.5万人民币,按15%缴纳三险一金,年底约有税前15万元的奖金收入。秦太太是幼儿园教师,工作稳定,每月收入税后3500元。二人目前均为32岁,2005年结婚,2005年6月首付15万元,采用等额本息方式贷款购买了
导游人员在对儿童的接待中,下列说法正确的是()
包装策略主要包括()
税收是国家普遍采用的取得财政收人的形式,它与其他财政收入形式相比,具有()等形式特征。
Hisdogwas______byatrucklastnightanddiedimmediately.
Internetpiracyisdefinedas______.SalesofpiratedsoftwareovertheInternethasbeenencouragedbyallofthefollowingEX
最新回复
(
0
)