首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2016-07-22
64
问题
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
方法一 用拉格朗日中值定理. 当a=0时,等号成立. 当a>0时,由于f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),ξ
1
<ξ
2
,使得[f(a+b)-f(b)]-[f(a)-f(0)]=af’(ξ
2
)-af’(ξ
1
). 因为f’(x)在(0,c)内单调减少,所以f’(ξ
2
)≤f’(ξ
1
),于是, [f(a+b)-f(b)]-[f(a)-f(0)]≤0, 即f(a+b)≤f(a)+f(b). 方法二 用函数的单调性. 将[f(a+b)-f(b)]-[f(a)-f(0)]中的b改写为x,构造辅助函数 F(x)=f(a+x)-f(x)-f(a),x∈[0,b], 显然F(0)=0,又因为f’(x)在(0,c)内单调减少,所以F’(x)=f’(a+x)-f’(x)≤0,于是有F(b)≤F(0)=0,即f(a+b)-f(b)-f(a)≤0,即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/Pcw4777K
0
考研数学一
相关试题推荐
设a1,a2,a3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,a1+a2=(2,0,-2,4)T,a1+a3=(3,1,0,5)T,则Ax=b的通解为________
设曲线y=ax2与y=lnx相切,两曲线及x轴所围图形为D求D绕y轴旋转一周所得旋转体的体积V
设A=,则()不是A的特征向量.
设f(x)在(0,1)内有定义,且exf(x)与e-f(x)在(0,1)内都是单调增函数,证明:f(x)在(0,1)内连续.
求极限
设A为四阶可逆方阵,将A第3列乘3倍再与第1列交换位置,得到矩阵B,则B-1A=__________.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_______.
设集合A={北京,上海},B={南京,广州,深圳},求A×B与B×A
随机试题
干旱和森林大火导致俄罗斯今年粮食歉收,国内粮价快速上涨。要想维持国内粮食价格稳定,俄罗斯必须禁止粮食出口。如果政府禁止粮食出口,俄出口商将避免损失,因为他们此前在低价位时签署出口合同,若在粮价大幅上涨时履行合同将会亏本。但是,如果俄政府禁止出口粮食,俄罗斯
活塞式压缩机压缩效率较高,排气量范围较广。
下列属于中国封建社会时期的特点有()。
某女,52岁。盆浴后白带多,外阴瘙痒伴尿频,阴道粘膜有散在出血点,后穹隆有多量黄绿色泡沫状分泌物,有臭味。诊断为
(2002年卷一第37题)以下有关PCT国际申请的哪些说法是正确的?
最近十几年,北亚的气候普遍比较凉。但是,在北亚的日平均气温和湿度比正常水平稍高的前年,那儿生长的庄稼的年产量却显著增加。在下个世纪,像前年那样增高的日平均气温和湿度将有望成为北亚的正常状态。然而科学家预测,在下个世纪北亚大多数地区的庄稼的年产量会下降。
美国纸浆的出口量今年会显著上升,出口量上升的原因在于美元的贬值使得日本和西欧的造纸商从美国购买纸浆比从其他渠道购买便宜。下面哪项是为得出以上结论所作的假设?
最鲜明体现资本主义国家实质的国家职能是()
Thecompanyrequiredthat______(这份合同要在一个月之内完成).
Ofthemillionsofinventions,whataretheeightgreatest?I’vedrawnupalist.Andthere’sonethingIknowaboutthisli
最新回复
(
0
)