首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2016-07-22
33
问题
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
方法一 用拉格朗日中值定理. 当a=0时,等号成立. 当a>0时,由于f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),ξ
1
<ξ
2
,使得[f(a+b)-f(b)]-[f(a)-f(0)]=af’(ξ
2
)-af’(ξ
1
). 因为f’(x)在(0,c)内单调减少,所以f’(ξ
2
)≤f’(ξ
1
),于是, [f(a+b)-f(b)]-[f(a)-f(0)]≤0, 即f(a+b)≤f(a)+f(b). 方法二 用函数的单调性. 将[f(a+b)-f(b)]-[f(a)-f(0)]中的b改写为x,构造辅助函数 F(x)=f(a+x)-f(x)-f(a),x∈[0,b], 显然F(0)=0,又因为f’(x)在(0,c)内单调减少,所以F’(x)=f’(a+x)-f’(x)≤0,于是有F(b)≤F(0)=0,即f(a+b)-f(b)-f(a)≤0,即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/Pcw4777K
0
考研数学一
相关试题推荐
设a1,a2,a3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,a1+a2=(2,0,-2,4)T,a1+a3=(3,1,0,5)T,则Ax=b的通解为________
设f(x)是(-∞,+∞)内以T(T>0)为周期的连续函数,且f(-x)=f(x)求
非齐次线性方程组AX=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则().
设A是n×m矩阵,B是m×n矩阵,E是n阶单位矩阵,若AB=E,则().
求二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩和正、负惯性指数.
设f(x)在[0,1]上连续,在(0,1)内可导,证明:存在ξ∈(0,1),使得4/π[f(1)-f(0)]=(1+ξ2)f’(ξ).
计算rotF·nds,其中F=(x-z)i+(x3+yz)j-3xy2k,∑是抛物面z=4-x2-y2在xOy平面上方的部分,n是∑的上侧的单位法向量.
设χOy平面上有正方形D={(χ,y)|0≤χ≤1,0≤y≤1)及直线l:χ+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0χS(t)dt(χ≥0).
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
已知A为n阶方阵,r(A)=n-3,且α1,α2,α3是AX=0的三个线性无关的解向量,则()为AX=0的基础解系.
随机试题
少年期性意识的最突出的特征是
下列属于高度危险物品的是()。
心包积液时,超声表现下列哪项不对
患者,女性,患有胃溃疡10年,因溃疡出血3d就诊,经治疗出血停止,病情缓解,粪便隐血试验阴性。患者出血期间,护士观察其粪便颜色呈
砌砖施工工艺中,铺灰应均匀平整,长度不宜超过()m。
根据刑事诉讼法律制度的规定,公安机关负责人的回避由()决定。
某旅行社4月份组织一个共30人的旅行团旅游,向每人收取旅游费3000元。旅游期间由旅行社为每人支付住宿费1200元,餐费1000元,交通费350元,门票50元。旅游业适用营业税税率为5%,旅行社该项业务应缴纳营业税()元。
邓小平在探索中国特色社会主义道路中,虽然没有明确提出“可持续发展战略”,但却包含着丰富的可持续发展的思想。他强调,促进我国经济和社会可持续发展,必须在保持经济增长的同时()。
简述中世纪城市学校的特点。
下列哪个包封装抽象窗口工具包,提供管理用户图形界面功能?
最新回复
(
0
)