首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在R上连续,且|f(x)|≤M. (1)试证明:微分方程y’+y=f(x)在区间R上存在一个有界的解,并求此解. (2)若f(x)是以ω为周期的函数,则上一题中的解也是一个以ω为周期的函数.
设函数f(x)在R上连续,且|f(x)|≤M. (1)试证明:微分方程y’+y=f(x)在区间R上存在一个有界的解,并求此解. (2)若f(x)是以ω为周期的函数,则上一题中的解也是一个以ω为周期的函数.
admin
2020-03-05
60
问题
设函数f(x)在R上连续,且|f(x)|≤M.
(1)试证明:微分方程y’+y=f(x)在区间R上存在一个有界的解,并求此解.
(2)若f(x)是以ω为周期的函数,则上一题中的解也是一个以ω为周期的函数.
选项
答案
微分方程y’+y=f(x)的通解为y(x)=e
-x
[c+∫
0
x
e
t
f(t)dt],其中c为任意常数. (1)因为函数f(x)在R上连续,取c=∫
-∞
0
e
t
f(t)dt(由假设,此广义积分是收敛的),则 y(x)=e
-x
∫
-∞
x
e
t
f(t)dt由于在区间R上,|f(x)|≤M,从而|y(x)|≤M,即为所给微分方程的一个有界解. (2)设f(x+ω)=f(x),则对上一题中的解y(x),当x∈R时,有 y(x+ω)=e
-(x+ω)
∫
-∞
(x+ω)
e
t
f(t)dt[*]e
-(x+ω)
∫
-∞
x
e
u+ω
f(u+ω)du =e
-x
e
-ω
∫
-∞
x
e
u+ω
f(u)du=e
-x
∫
-∞
x
e
u
f(u)du=y(x),所以,所给微分方程的通解y(x)也是一个以ω为周期的函数.
解析
本题的第一部分应先求其通解,再验证它的有界性;第二部分则是判断(1)中的解具有周期性.
转载请注明原文地址:https://kaotiyun.com/show/SrS4777K
0
考研数学一
相关试题推荐
设A为3阶矩阵,r(A)=1,则λ=0().
下列反常积分中发散的是
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
设f(x)为连续函数,a与m是常数且a>0,将二次积分出化为定积分,则I=__________.
齐次线性方程组的系数矩阵A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为则()
级数的收敛域为__________.
设级数收敛,则P的取值范围是____________.
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为___________。
曲线y=的斜渐近线方程为______。
(1)φ(x)=∫sinxcos2xln(1+t2)dt,求φ’(x).(2)设F(x)=,求F"(x).
随机试题
滑动轴承的摩擦状态大多数情况下处于()。
都是联绵词的一组是()
A.alotofmoneyB.expresspublicfeelingonlocalissuesC.morningD.localpeopleE.nationalissuesF.localissuesMany
冠状动脉CTA在临床应用广泛,关于冠状动脉CTA。冠状动脉CTA的适应证错误的是
商业银行贷给同一借款人的贷款金额不得超过银行资本金额的( )。
基金托管人应当履行的职责包括()等。
在收容教养期间,对被收容教养的未成年人实行( )方针。
根据所给材料,回答下面问题
建设生态文明,必须保护生态环境。保护生态环境的根本之策是
Inthepastdecade,newscientificdevelopmentsincommunicationshavechangedthewaymanypeoplegatherinformationaboutpoli
最新回复
(
0
)