首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且∫01xf(x)dx=∫01f(x)dx,试证:至少存在一点ξ∈(0,1),使得 ∫01f(x)dx=0.
设f(x)在[0,1]上连续,且∫01xf(x)dx=∫01f(x)dx,试证:至少存在一点ξ∈(0,1),使得 ∫01f(x)dx=0.
admin
2017-07-26
49
问题
设f(x)在[0,1]上连续,且∫
0
1
xf(x)dx=∫
0
1
f(x)dx,试证:至少存在一点ξ∈(0,1),使得
∫
0
1
f(x)dx=0.
选项
答案
令F(x)=∫
0
x
(x—u)f(u)du,则F(x)在[0,1]上连续,在(0,1)内可导,且 F(0)=0, F(1)=∫
0
1
(1一u)f(u)du=∫
0
1
f(u)du—∫
0
1
u(u)du=∫
0
1
f(u)du—∫
0
1
f(u)du=0, 即F(x)在[0,1]上满足了洛尔定理的全部条件.由洛尔定理,存在点ξ∈(0,1),使得F’(ξ)=0,即 [∫
0
x
(x—u)f(u)du]’|
x=ξ
=[∫
0
1
f(t)dt+xf(x)—xf(x)]|
x=ξ
=0, 故有∫
0
ξ
f(x)dx=0. 为辅助函数.
解析
欲证∫
0
ξ
f(x)dx=0,若用F(x)=∫
0
x
f(x)dt作为辅助函数,用零值定理难以验证F(0)F(1)<0.于是,改为令F’(x)=∫
0
x
f(t)dt.
作辅助函数F(x)=∫
0
x
[∫
0
u
f(t)dt]du=u∫
0
u
f(t)dt|
0
x
—∫
0
x
uf(u)du
=x∫
0
x
f(u)du一∫
0
x
uf(u)du=∫
0
x
(x一u)f(u)du,
再用洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/SuH4777K
0
考研数学三
相关试题推荐
设a1,a2,…,as均为n维向量,下列结论不正确的是().
玻璃杯成箱出售,每箱20只,假设各箱含0、1、2只残次品的概率分别为0.8、0.1和0.1.顾客欲购一箱玻璃杯,在购买时售货员随意取一箱,而顾客随机察看该箱中4只玻璃杯,若无残次品,则买下该箱玻璃杯,否则退回.试求:(1)顾客买下该箱的概率α;
设中与A等价的矩阵有()个.
设z=f(u,v,x),u=φ(x,y),v=ψ(y),求复合函数z=f(φ(x,y),φ(y),x)的偏导数
设,则函数在原点处偏导数存在的情况是().
μ(x,y)=x2-xy+y2,L为抛物线y=x2自原点至点A(1,1)的有向弧段n为L的切向量顺时针旋转π/2角所得的法向量为函数μ沿法向量n的方向导数,计算
证明不等式:xarctanx≥ln(1+x2).
若f(x)=,试证:f’(0)=0.
设试证明:P(A)+P(B)一P(C)≤1.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
随机试题
箭头所指的解剖结构是
怀疑脑出血时的首选检查
螺旋菌中菌体有两个以上弯曲,捻转呈螺旋状,较为坚硬的菌称为()。
患者女,27岁,产后一天,护士评估恶露情况,发现恶露是红色,有臭味。可能是
宏润公司为增值税一般纳税企业,适用增值税税率为17%。2014年3月25日,宏润公司向甲公司提供一项加工劳务,劳务成本为15000元,共收取加工费为26325元(含增值税)。不考虑其他因素,该项加工劳务实现的营业利润为()元。
票据权利包括付款请求权和追索权。()
你认为素质教育对于构建和谐社会具有什么意义和作用?
关于颈神经丛阻滞,正确的是
Predictionsoflargepopulationsofrobotsinindustryhaveyettocometrue.Foradecadeormore,manufacturersofbigrobots
FromBostontoLosAngeles,fromNewYorkCitytoChicagotoDallas,museumsareeitherplanning,building,orwrappingupwhol
最新回复
(
0
)