首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且∫01xf(x)dx=∫01f(x)dx,试证:至少存在一点ξ∈(0,1),使得 ∫01f(x)dx=0.
设f(x)在[0,1]上连续,且∫01xf(x)dx=∫01f(x)dx,试证:至少存在一点ξ∈(0,1),使得 ∫01f(x)dx=0.
admin
2017-07-26
43
问题
设f(x)在[0,1]上连续,且∫
0
1
xf(x)dx=∫
0
1
f(x)dx,试证:至少存在一点ξ∈(0,1),使得
∫
0
1
f(x)dx=0.
选项
答案
令F(x)=∫
0
x
(x—u)f(u)du,则F(x)在[0,1]上连续,在(0,1)内可导,且 F(0)=0, F(1)=∫
0
1
(1一u)f(u)du=∫
0
1
f(u)du—∫
0
1
u(u)du=∫
0
1
f(u)du—∫
0
1
f(u)du=0, 即F(x)在[0,1]上满足了洛尔定理的全部条件.由洛尔定理,存在点ξ∈(0,1),使得F’(ξ)=0,即 [∫
0
x
(x—u)f(u)du]’|
x=ξ
=[∫
0
1
f(t)dt+xf(x)—xf(x)]|
x=ξ
=0, 故有∫
0
ξ
f(x)dx=0. 为辅助函数.
解析
欲证∫
0
ξ
f(x)dx=0,若用F(x)=∫
0
x
f(x)dt作为辅助函数,用零值定理难以验证F(0)F(1)<0.于是,改为令F’(x)=∫
0
x
f(t)dt.
作辅助函数F(x)=∫
0
x
[∫
0
u
f(t)dt]du=u∫
0
u
f(t)dt|
0
x
—∫
0
x
uf(u)du
=x∫
0
x
f(u)du一∫
0
x
uf(u)du=∫
0
x
(x一u)f(u)du,
再用洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/SuH4777K
0
考研数学三
相关试题推荐
设一下命题:①若(u2n-1+u2n)收敛,则un收敛.②若un收敛,则un+1000收敛.③若un+1/un>1,则un发散.④若(un+vn)收敛,则un,vn都收敛.则以上命题中正确的是
设x轴正向到方向l的转角为ψ,求函数f(x,y)=x2-xy+y2在点(1,1)沿方向z的方向导数,并分别确定转角ψ,使得方向导数有(1)最大值,(2)最小值,(3)等于0.
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
已知线性方程Ax=β的增广矩阵可化为且方程组有无穷多解,则参数A的取值必须满足().
μ(x,y)=x2-xy+y2,L为抛物线y=x2自原点至点A(1,1)的有向弧段n为L的切向量顺时针旋转π/2角所得的法向量为函数μ沿法向量n的方向导数,计算
设f(x)连续,(A为常数),求φ’(x)并讨论φ’(x)在x=0处的连续性.
求下列函数指定阶的导数:(1)y=excosx,求y(4);(2)y=x2sin2x,求y(50).
设f〞(x)存在,求下列函数y的二阶导数d2y/dx2:(1)y=f(e-x);(2)y=ln[f(x)].
对于实数x>0,定义对数函数,依此定义试证:(1)=-lnx(x>0);(2)ln(xy)=lnx+lny(x>0,y>0).
随机试题
依照莱斯特.萨拉蒙的界定,下列选项哪些属于非政府公共部门特征?
患者,女性,63岁,患"哮喘"病史。症见喘咳短气,不能平卧,胸膈满闷,腰疼脚弱,体倦肢肿,舌苔白腻者。治宜选用
档案材料组通过对档案和内业资料的查阅考核申请人的业绩、检测能力、管理的规范性和人员状况。查阅内容包括:()。
【背景资料】某工程项目施工合同已签订,采取单价合同,其中规定分项工程的工程量增加超过10%时,将双方协商的工程综合单价由100元/m3调整为80元/m3。双方对施工进度网络计划已达成一致意见,如下图所示。工程施工中发生如下几项事件:事件一:甲方提供的
下列关于建设安装工程中安装工程费估算的表达公式,不正确的是()。
创设()是激发学生学习兴趣、培养学生善于思考、学会学习的有益尝试。
从程序设计的方法和技术的发展角度来说,程序设计主要经历了结构化设计和__________的程序设计阶段。
Iignoredanoldwomanwhoaskedmeformoneyinthestreetyesterdayandit’sbeenonmy______eversince.
A、It’stimetourgehimtostudymath.B、Hehimselfshouldmakethedecision.C、Theyshouldhelphimstudymath.D、Theyshouldl
Thehomesecretary,CharlesClarke,willtodayguaranteethatthepersonaldetailscontainedonthenationalidentitycardwill
最新回复
(
0
)