首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且∫01xf(x)dx=∫01f(x)dx,试证:至少存在一点ξ∈(0,1),使得 ∫01f(x)dx=0.
设f(x)在[0,1]上连续,且∫01xf(x)dx=∫01f(x)dx,试证:至少存在一点ξ∈(0,1),使得 ∫01f(x)dx=0.
admin
2017-07-26
38
问题
设f(x)在[0,1]上连续,且∫
0
1
xf(x)dx=∫
0
1
f(x)dx,试证:至少存在一点ξ∈(0,1),使得
∫
0
1
f(x)dx=0.
选项
答案
令F(x)=∫
0
x
(x—u)f(u)du,则F(x)在[0,1]上连续,在(0,1)内可导,且 F(0)=0, F(1)=∫
0
1
(1一u)f(u)du=∫
0
1
f(u)du—∫
0
1
u(u)du=∫
0
1
f(u)du—∫
0
1
f(u)du=0, 即F(x)在[0,1]上满足了洛尔定理的全部条件.由洛尔定理,存在点ξ∈(0,1),使得F’(ξ)=0,即 [∫
0
x
(x—u)f(u)du]’|
x=ξ
=[∫
0
1
f(t)dt+xf(x)—xf(x)]|
x=ξ
=0, 故有∫
0
ξ
f(x)dx=0. 为辅助函数.
解析
欲证∫
0
ξ
f(x)dx=0,若用F(x)=∫
0
x
f(x)dt作为辅助函数,用零值定理难以验证F(0)F(1)<0.于是,改为令F’(x)=∫
0
x
f(t)dt.
作辅助函数F(x)=∫
0
x
[∫
0
u
f(t)dt]du=u∫
0
u
f(t)dt|
0
x
—∫
0
x
uf(u)du
=x∫
0
x
f(u)du一∫
0
x
uf(u)du=∫
0
x
(x一u)f(u)du,
再用洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/SuH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
曲线在点(1,1,3)处的切线方程为_____.
设A是n阶反对称矩阵,证明:如果λ是A的特征值,那么一λ也必是A的特征值.
设其导函数在x=0处连续,则λ的取值范围是__________.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数,a,b满足条件0≤a≤b≤a+b≤c.
设f(μ,ν)具有二阶连续偏导数,且满足又g(x,y)=
设函数y(x)在(一∞,+∞)内有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(I)试将x=x(y)所满足的方程变换成y=y(x)所满足的微分方程;(II)求解变换后的微分方程的通解.
设f(x)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得
设试证明:P(A)+P(B)一P(C)≤1.
对于任意二事件A1,A2,考虑二随机变量试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.
随机试题
铁元素通常用符号()来表示。
下列病人应进行呼吸监测,除外()
足月新生儿,日龄5天,生后第3天起,出现皮肤轻度黄染,一般情况良好,血清胆红素171μmol/L(10mg/dl),该新生儿属于()。
投资项目的建设投资、建设期利息与流动资金之和称为( )。
未按照批准的位置、面积、期限占用或者()未提前办理变更审批手续的,由市政工程行政主管部门或者其他有关部门责令限期改正。
关于科学革命的讨论________于十七世纪。不过,其时革命尚在________地展开,相关讨论的焦点集中在科学的本性,而未有所谓“科学革命史”的理解。到十九世纪,现代科学的基本模式逐渐定型,一些学者便回到现代科学的源头做起了编史和整理工作。 依次填入
Mostofusthinkweknowthekindofkidwhobecomesakiller,andmostofthetimewe’reright.Boys(1)_____about85%ofall
以下描述不符合Access特点和功能的是______。
计算机辅助设计简称是
ThefirstperformanceofTchaikovsky’sTheNutcracker,inSt.Petersburgin1892,wasaflop.Wroteonecriticthenextday:"Fo
最新回复
(
0
)