首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且∫01xf(x)dx=∫01f(x)dx,试证:至少存在一点ξ∈(0,1),使得 ∫01f(x)dx=0.
设f(x)在[0,1]上连续,且∫01xf(x)dx=∫01f(x)dx,试证:至少存在一点ξ∈(0,1),使得 ∫01f(x)dx=0.
admin
2017-07-26
23
问题
设f(x)在[0,1]上连续,且∫
0
1
xf(x)dx=∫
0
1
f(x)dx,试证:至少存在一点ξ∈(0,1),使得
∫
0
1
f(x)dx=0.
选项
答案
令F(x)=∫
0
x
(x—u)f(u)du,则F(x)在[0,1]上连续,在(0,1)内可导,且 F(0)=0, F(1)=∫
0
1
(1一u)f(u)du=∫
0
1
f(u)du—∫
0
1
u(u)du=∫
0
1
f(u)du—∫
0
1
f(u)du=0, 即F(x)在[0,1]上满足了洛尔定理的全部条件.由洛尔定理,存在点ξ∈(0,1),使得F’(ξ)=0,即 [∫
0
x
(x—u)f(u)du]’|
x=ξ
=[∫
0
1
f(t)dt+xf(x)—xf(x)]|
x=ξ
=0, 故有∫
0
ξ
f(x)dx=0. 为辅助函数.
解析
欲证∫
0
ξ
f(x)dx=0,若用F(x)=∫
0
x
f(x)dt作为辅助函数,用零值定理难以验证F(0)F(1)<0.于是,改为令F’(x)=∫
0
x
f(t)dt.
作辅助函数F(x)=∫
0
x
[∫
0
u
f(t)dt]du=u∫
0
u
f(t)dt|
0
x
—∫
0
x
uf(u)du
=x∫
0
x
f(u)du一∫
0
x
uf(u)du=∫
0
x
(x一u)f(u)du,
再用洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/SuH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
设A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
下列各题中均假定fˊ(x。)存在,按照导数定义观察下列极限,指出A表示什么:
向量组a1,a2,…,as线性无关的充分条件是().
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积A为有限值,求b及A的值.
求下列函数指定阶的导数:(1)y=excosx,求y(4);(2)y=x2sin2x,求y(50).
设f(x)在[a,b]上连续,在(a,6)内二阶可导,f(a)=f(b)=0,∫ab)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
试证明:曲线恰有三个拐点,且位于同一条直线上.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
随机试题
关于“财务费用”账户,下列说法正确的有()
前列腺肿瘤患者的前列腺液
患者,男性,58岁。肺炎入院4日。体温39.5℃,思维和语言不连贯,并躁动不安。此现象为
对于采用阴极保护的埋地钢管与隧桥管道之间应设置()。
在存货价格持续上涨的情况下,使期末存货账面价值最大的存货计价方法是()。
A、 B、 C、 D、 C
下面关于CAN的叙述中,错误的是()。
已知一汉字的国标码是5E38,其内码应是()。
Thetopicofthediscussionistodecidewhethertheyhavetousethenewtechnologytoattractcustomersornot.
Whatwillthemandointheevening?
最新回复
(
0
)