首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
admin
2019-01-13
36
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记
若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
。
选项
答案
设A=2αα
T
+ββ
T
,由于|α|=1,α
T
β=β
T
α=0,则 Aα=(2αα
T
+ββ
T
)α=2α|α|
T
+ββ
T
α=2α, 所以α为矩阵对应特征值λ
1
=2的特征向量; Aβ=(2αα
T
+ββ
T
)β=2αα
T
β+β|β|
2
=β, 所以β为矩阵对应特征值λ
2
=1的特征向量。 而矩阵A的秩 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)=2, 所以λ
3
=0也是矩阵的一个特征值。故f在正交变换下的标准形为2y
1
2
+y
2
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/T5j4777K
0
考研数学二
相关试题推荐
(2000年)设函数f(χ),g(χ)是大于零的可导函数,且f′(χ)g(χ)-f(χ)g′(χ)<0,则当a<χ<b时有【】
(2012年)已知函数f(χ)=,记a=f(χ).(Ⅰ)求a的值;(Ⅱ)若当χ→0时,f(χ)-a与χk是同阶无穷小,求常数k的值.
(1991年)设函数f(χ)在(-∞,+∞)内有定义,χ0≠0是函数f(χ)的极大点,则【】
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
已知n(n≥3)阶实矩阵A=(aij)n×n满足条件:(1)aij=Aij(i,j=1,2,…,n),其中Aij是aij的代数余子式;(2)a11≠0.求|A|.
f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.证明:.
求曲线y=ex上的最大曲率及其曲率圆方程.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4诹线性相关;(2)a为何值时,向量组α1,α2,α3,α4线
设则f(x,y)在点(0,0)处()
设则()
随机试题
对于采取全额包销方式销售的股票,其销售期最长不得超过()日。
临床教学在护理专业教学中的作用包括()
教学中,在每节课或学习单元结束后,对学生进行口头提问和书面测验,及时发现学生的问题,并根据学生的个体差异进行有针对性的矫正。这种评价是
金银花的主要化学成分是肉桂的主要化学成分是
下列关于妊娠期妇女用药的叙述哪些是正确的
根据《招标投标法实施条例》,下列情形属于投标人相互串通投标的有()。
贴现发行的零息债券一般()债券的面值。
“由浅人深、由易到难、由简到繁”体现了直观性教学原则。()
市场上售价3元300克的洗洁精分为两种:一种加有除臭剂,另一种没有加。尽管两种洗洁精的效果相同,但加有除臭剂的洗洁精在存放的时间方面明显不如没加除臭剂的洗洁精长。根据上述短文,可以推出的结论是()。
Whybankruptyourselfinaso-calledoldpeople’shome?Tryahealthspa—itmightactuallybecheaper.SometimesIseeoldl
最新回复
(
0
)