首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设g(x)可导,|g’(x)|<1,且当a≤x≤b时,a<g(x)<b,又x+g(x)-2f(x)=0,若{xn}满足xn+1=f(xn),n=0,1,2,…,x0∈[a,b]。证明: 存在,并求其值。
设g(x)可导,|g’(x)|<1,且当a≤x≤b时,a<g(x)<b,又x+g(x)-2f(x)=0,若{xn}满足xn+1=f(xn),n=0,1,2,…,x0∈[a,b]。证明: 存在,并求其值。
admin
2022-03-23
34
问题
设g(x)可导,|g’(x)|<1,且当a≤x≤b时,a<g(x)<b,又x+g(x)-2f(x)=0,若{x
n
}满足x
n+1
=f(x
n
),n=0,1,2,…,x
0
∈[a,b]。证明:
存在,并求其值。
选项
答案
由f(x)=[*][x+g(x)],a≤x≤b时,a<g(x)<b,有a<[*][x+g(x)]<b,即 a<f(x)<b ② 又由拉格朗日中值定理,有 x
n+1
-x
n
=f(x
n
)-f(x
n-1
)=f’(η)(x
n
-x
n-1
) 其中η介于x
n
与x
n-1
之间,n=1,2,… 由②知a<x
n+1
=f(x
n
)<b,即{x
n
}有界,由①知f’(η)<0,于是当x
1
>x
0
时,有x
2
>x
1
,...,由数学归纳法知{x
n
}单调增加,同理,当x
1
<x
0
时,有{x
n
}单调减少,根据单调有界准则,[*]x
n
[*],于是A=f(A),由第一问得知,A=ξ,即[*]x
n
=ξ.
解析
转载请注明原文地址:https://kaotiyun.com/show/TBR4777K
0
考研数学三
相关试题推荐
设un≠0,(n=1,2,…),且=1,则极数【】
函数z=f(x,y)=在点(0,0)处()
设z=x2+y2一2ln|x|一2ln|y|(x≠0,y≠0),则下列结论正确的是
设随机变量X和Y都服从正态分布,则()
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
设随机变量X1,…,X2,…相互独立,记Yn=X2n-X2n-1(n≥1),根据大数定律,当n→∞时依概率收敛到零,只要{Xn,n≥1}
设f(x)是[0,1]上单调减少的正值连续函数,证明∫01xf2(x)dx.∫01f3(x)dx≥∫01f3(x)dx.∫01f2(x)dx,即要证I=∫01f2(x)dx.∫01f3(x)dx一∫01xf3(x)dx.∫01f2(x
设X1,X2,…,Xn来自正态总体X的简单随机样本,且Y1=(X1+X2+…+X6)/6,Y2=(X7+X8+X9)/3,证明统计量Z服从自由度为2的t分布.
f(x)=渐近线的条数为().
设b为常数.(Ⅰ)求曲线L:y=的斜渐近线l的方程;(Ⅱ)设L与l从x=1延伸到x→∞之间的图形的面积A为有限值,求b及A的值.
随机试题
It’stooexpensiveforme.Ican’t______it.
大咯血时最危险的并发症是
预防消化道传染病最主要措施是
功能软坚散结、滋阴潜阳的药是
注册咨询工程师(投资)的应用知识熟练程度主要强调()。
下列关于资本的说法,正确的是()。
2011年7月1日,胡锦涛总书记在庆祝中国共产党成立90周年大会上说,经过90年的奋斗、创造、积累,党和人民必须倍加珍惜、长期坚持、不断发展的成就不包括()。
[2012年10月]某商场在一次活动中规定:一次购物不超过100元时没有优惠;超过100元而没有超过200元时,按该次购物全额9折优惠;超过200元时,其中200元按9折优惠,超过200元的部分按8.5折优惠。若甲、乙在该商场购买的物品分别付费94.5元和
执行返回指令,退出中断服务程序,这时返回地址来自( )。
设有基类定义:classCbase{private:inta;protected:intb;public:intc;};派生类采用何种继承方式可以使成员变量b成为自己的私有
最新回复
(
0
)