首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设g(x)可导,|g’(x)|<1,且当a≤x≤b时,a<g(x)<b,又x+g(x)-2f(x)=0,若{xn}满足xn+1=f(xn),n=0,1,2,…,x0∈[a,b]。证明: 存在,并求其值。
设g(x)可导,|g’(x)|<1,且当a≤x≤b时,a<g(x)<b,又x+g(x)-2f(x)=0,若{xn}满足xn+1=f(xn),n=0,1,2,…,x0∈[a,b]。证明: 存在,并求其值。
admin
2022-03-23
79
问题
设g(x)可导,|g’(x)|<1,且当a≤x≤b时,a<g(x)<b,又x+g(x)-2f(x)=0,若{x
n
}满足x
n+1
=f(x
n
),n=0,1,2,…,x
0
∈[a,b]。证明:
存在,并求其值。
选项
答案
由f(x)=[*][x+g(x)],a≤x≤b时,a<g(x)<b,有a<[*][x+g(x)]<b,即 a<f(x)<b ② 又由拉格朗日中值定理,有 x
n+1
-x
n
=f(x
n
)-f(x
n-1
)=f’(η)(x
n
-x
n-1
) 其中η介于x
n
与x
n-1
之间,n=1,2,… 由②知a<x
n+1
=f(x
n
)<b,即{x
n
}有界,由①知f’(η)<0,于是当x
1
>x
0
时,有x
2
>x
1
,...,由数学归纳法知{x
n
}单调增加,同理,当x
1
<x
0
时,有{x
n
}单调减少,根据单调有界准则,[*]x
n
[*],于是A=f(A),由第一问得知,A=ξ,即[*]x
n
=ξ.
解析
转载请注明原文地址:https://kaotiyun.com/show/TBR4777K
0
考研数学三
相关试题推荐
设函数则在(-∞,+∞)内
设X为随机变量,E(X)=μ,D(X)=σ2,则对任意常数C有().
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,则=()
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5一α4的秩为4.
(96年)设X1,X2,…,Kn是来自总体X的简单随机样本.已知EX4=ak(k=1,2,3,4),证明当n充分大时,随机变量Zn=近似服从正态分布,并指出其分布参数.
设随机变量X的绝对值不大于1,P(X=-1)=,P(X=1)=.在事件{-1<X<1}出现的条件下,X在区间(-1,1)内的任一子区间上取值的条件概率与该子区间的长度成正比.试求X的分布函数F(χ)=P(X≤χ).
就a,b的不同取值情况讨论方程组何时无解、何时只有唯一解、何时有无数个解?在有无数个解时求其通解.
f(x)=渐近线的条数为().
曲线的渐近线条数为()
随机试题
根据窗体的用途,可将窗体分为数据操作窗体、______和信息交互窗体。
支气管哮喘( )气胸( )
()的治理方法以湿法为主,常采用水吸收法净化此废气,净化率可达99.9%。
具有社会危害性的统计行为,是统计违法行为。()
租入设备、担保、抵押备查簿属于备查账簿。()
深入贯彻落实科学发展观,基础在于()。
()是建立新型师生关系的重要途径。
一辈子深藏功名、初心不改的张富清,把青春和生命献给脱贫事业的黄文秀,为救火而捐躯的四川木里31名勇士,用自己身体保护战友的杜富国,以十一连胜夺取世界杯冠军的中国女排……无数英雄用他们的实际行动告诉我们,人生的根本问题是
TaskOne—Theindustriestheyreported•Forquestions13-17,matchtheextractswiththeindustries,listedA-H.•Foreach
A、Hisroommateisnoisy.B、Heisn’tspeakingtohisroommate.C、Hedoesnotlikehisroommate.D、Hedoesn’tknowhisroommateve
最新回复
(
0
)