首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
admin
2019-02-20
87
问题
就a的不同取值情况,确定方程lnx=x
a
(a>0)实根的个数.
选项
答案
令f(x)=lnx-x
a
,即讨论f(x)在(0,+∞)有几个零点.用单调性分析方法. 求f(x)的单调区间. [*] 则当0<x≤x
0
时,f(x)单调上升;当x≥x
0
时,f(x)单调下降;当x=x
0
时,f(x)取最大值[*]从而f(x)在(0,+∞)有几个零点,取决于y=f(x)属于图2.13中的哪种情形. [*] 方程f(x)=0的实根个数有下列三种情形: (I)当[*]即[*]时,恒有f(x)<0 ([*]x∈(0,+∞)),故f(x)=0没有根. (Ⅱ)当[*]即[*]时,由于x∈(0,+∞),当x≠x
0
=e
e
时,f(x)<0,故f(x)=0只有一个根,即x=x
0
=e
e
. (Ⅲ)当[*]即[*]时,因为 [*] 故方程f(x)=0在(0,x
0
),x
0
,+∞)各只有一个根.因此f(x)=0在(0,+∞)恰有两个根.
解析
转载请注明原文地址:https://kaotiyun.com/show/TFP4777K
0
考研数学三
相关试题推荐
设A、B是n阶方阵,E+AB可逆.(1)验证E+BA也可逆,且(E+BA)—1=E—B(E+AB)—1A.(2)设P=xiyi=1,利用(1)证明P可逆,并求P—1.
证明:方阵A是正交阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1,则它的每个元素等于自己的代数余子式乘一1.
过曲线y=及x轴所围成的平面图形的面积为,求切点M的坐标.
假设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(E(X))为5小时.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y的分布函数F(y).
设随机变量U和V的可能取值均为1和一1,且P(U=1)=.(1)求U和V的联合分布律;(2)求协方差Cov(U+1,V一1);(3)求关于x的方程x2+Ux+V=0至少有一个实根的概率.
设λ1,λ2是n阶实对称矩阵A的两个不同的特征值,α是A的对应于特征值λ1的一个单位特征向量,求矩阵B=A—λ1ααT的两个特征值.
设A为n阶矩阵.(1)已知β为n维非零列向量,若存在正整数k,使得Ak≠0,但Ak+1β=0,则向量组β,Aβ,A2β,…,Akβ线性无关;(2)证明:齐次线性方程组Anx=0与An+1x=0是同解线性方程组;(3)证明:r(
设f(x)、g(x)在[一a,a](a>0)上连续,g(x)为偶函数,且满足f(x)+f(一x)=A(A为常数).(1)试证:∫—aaf(x)g(x)dx=A∫0ag(x)dx;(2)计算:|sinx|arctanexdx.
袋中装有4枚正品均匀硬币,2枚次品均匀硬币,次品硬币的两面均印有国徽.在袋中任取一枚,将它投掷了3次,已知每次都得到国徽,求此硬币是正品的概率.
随机试题
若要对正在编辑的文档进行备份或以另外一个文件名保存文档,使用“文件”功能区中的()
Alotofkidsaregettingonlinethesedays-sharingdata,talkingaboutsocialissues,meetingadultsaswellaskids,andlea
良性高血压病时,细动脉硬化的病理改变是
依据《建设工程委托监理合同(示范文本)》规定,属于附加的监理工作是( )。
主体结构施工阶段安全生产的控制要点包括( )。
俗话说:“人逢喜事精神爽。”这种情绪状态属于()
在发生有毒气体泄露及其他易燃、易爆、剧毒、放射性等危险物质险情后,处警人员到达现场的做法,不恰当的是()。
A、 B、 C、 D、 B每组前两个图形叠加去同存异得到第三个图形。
写出下列句子的拼音。老张打算明天去西安看看秦始皇兵马俑。
A、 B、 C、 A
最新回复
(
0
)