首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
就a的不同取值情况,确定方程lnx=xa(a>0)实根的个数.
admin
2019-02-20
66
问题
就a的不同取值情况,确定方程lnx=x
a
(a>0)实根的个数.
选项
答案
令f(x)=lnx-x
a
,即讨论f(x)在(0,+∞)有几个零点.用单调性分析方法. 求f(x)的单调区间. [*] 则当0<x≤x
0
时,f(x)单调上升;当x≥x
0
时,f(x)单调下降;当x=x
0
时,f(x)取最大值[*]从而f(x)在(0,+∞)有几个零点,取决于y=f(x)属于图2.13中的哪种情形. [*] 方程f(x)=0的实根个数有下列三种情形: (I)当[*]即[*]时,恒有f(x)<0 ([*]x∈(0,+∞)),故f(x)=0没有根. (Ⅱ)当[*]即[*]时,由于x∈(0,+∞),当x≠x
0
=e
e
时,f(x)<0,故f(x)=0只有一个根,即x=x
0
=e
e
. (Ⅲ)当[*]即[*]时,因为 [*] 故方程f(x)=0在(0,x
0
),x
0
,+∞)各只有一个根.因此f(x)=0在(0,+∞)恰有两个根.
解析
转载请注明原文地址:https://kaotiyun.com/show/TFP4777K
0
考研数学三
相关试题推荐
设A、B均为n阶实对称矩阵,且A的特征值全大于a,B的特征值全大于b,其中a,b均为实常数,证明:矩阵A+B的特征值全大于a+b.
设λ1,λ2是n阶实对称矩阵A的两个不同特征值,α是A的对应于特征值λ1的一个单位特征向量.试求矩阵B=A—λ1ααT的两个特征值.
设A、B都是m×n矩阵,证明:r(A+B)≤r(A)+r(B).
设A是n阶方阵,且E+A可逆,令f(A)=(E—A)(E+A)—1,证明:若A是反对称矩阵,则f(A)是正交阵.
设矩阵A=,已知齐次线性方程组Ax=0的解空间的维数为2,求a的值并求出方程组Ax=0的用基础解系表示的通解.
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r[α1,α2,…,αn,β1,β2,…,βn,β]=r,则().
求曲线y=的渐近线.
设随机变量X的概率密度为F(x)是X的分布函数.求随机变量Y=F(X)的分布函数.
设a,b,α为常数,则下列函数中弹性函数不为常数的是().
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
随机试题
简述加德纳多元智力理论的主要观点。
女性,33岁。因呕血200ml,黑便3次伴晕厥而被抬送来诊。查体:贫血貌,腹平软,剑下轻压痛,肝脾肋下未及,移动性浊音阴性。如果考虑为消化性溃疡,最重要的病史为
为证券发行出具有关文件的专业机构和人员,必须严格履行法定职责,保证其所出具文件的()
()是指根据保险公司的委托,向保险公司收取佣金,在保险公司授权的范围内专门代为办理保险业务的机构。
关于农用地转用审批与土地征收审批,下列说法正确的有()。
【2010福建】简述思维过程中影响问题解决的因素。
2013年6月11日,“神舟”十号载人飞船在酒泉卫星发射中心发射升空,准确进入预定轨道,顺利将3名航天员送入太空。中国“为梦想飞天”再一次取得圆满成功。关于“神舟”飞船系列发展历程,下列对应关系正确的是()。
一个容器里有100个球,分别是红、黄、蓝三种颜色。甲说:“这个容器里至少有一种颜色的球不少于34个。”乙说:“这个容器里至少有一种颜色的球不少于33个。”丙说:“这个容器里任意两种颜色的球的总数不会超过99个。”下列哪项论断是正确的?
IthasbeenahundredyearssincethelastbigoneinCalifornia,the1906SanFranciscoearthquake,whichhelpedgive(1)_____
下列符号中,正确的C++标识符是()。
最新回复
(
0
)