求曲线y=∫0xf(t)dt与y=2x—1交点的个数.其中f(x)在[0,1]上连续,f(x)<1.

admin2017-07-26  25

问题 求曲线y=∫0xf(t)dt与y=2x—1交点的个数.其中f(x)在[0,1]上连续,f(x)<1.

选项

答案令φ(x)=2x—∫0xf(t)dt一1,则φ(x)在[0,1]上连续,且 φ(0)=0—0—1=一1<0, φ(1)=2一∫01f(x)dx一1=1一∫01f(x)dx>0,(因为f(x)<1) 所以,由零值定理,存在点ξ∈(0,1),使得φ(ξ)=0. 又φ’(x)=2一f(x)>0,可知φ(x)在[0,1]内单增.故φ(x)在(0,1)内有且仅有一个零点,即曲线y=∫0xf(x)dt与y=2x一1在(0,1)内仅有一个交点.

解析 作辅助函数φ(x)=2x—∫0xf(t)dt一1,将两曲线的交点转化为φ(x)的零点或方程φ(x)=0的根的问题。
转载请注明原文地址:https://kaotiyun.com/show/arH4777K
0

最新回复(0)