首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2,其二次型矩阵A满足r(ATA)=2. 求方程f(x1,x2,x3)=0的解。
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2,其二次型矩阵A满足r(ATA)=2. 求方程f(x1,x2,x3)=0的解。
admin
2022-03-23
86
问题
已知二次型f(x
1
,x
2
,x
3
)=(1-a)x
1
2
+(1-a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
,其二次型矩阵A满足r(A
T
A)=2.
求方程f(x
1
,x
2
,x
3
)=0的解。
选项
答案
方法一 由上一问,将f(x
1
,x
2
,x
3
)=0化为2y
1
2
+2y
2
2
=0,有y
1
=y
2
=0,故 [*]=Qy=(η
1
,η
2
,η
3
)[*]=y
3
η
3
=k[*],其中k为任意常数 方法二 由f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
=0,有[*]得通解为k(-1,1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/TIR4777K
0
考研数学三
相关试题推荐
设A,B为n阶矩阵,则下列结论正确的是().
在全概率公式中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
设f(x)二阶连续可导,,则().
已知A=,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数a的值;
设函数y=y(x)是微分方程y′—xy=满足y(1)=特解.设平面区域D={(x,y)|1≤x≤2,0≤y≤y(x)},求D绕x轴旋转所得旋转体的体积.
[2014年]求幂级数的收敛域及和函数.
设X1,X2,…,Xn来自正态总体X的简单随机样本,且Y1=(X1+X2+…+X6)/6,Y2=(X7+X8+X9)/3,证明统计量Z服从自由度为2的t分布.
设f(t)在[0,π]上连续,在(0,π)内可导,且∫0πf(x)cosxdx=∫0πf(x)sinxdx=0.证明:存在ξ∈(0,π),使得f’(ξ)=0.
曲线y=的斜渐近线为_____________.
设f(x)-x2,f[φ(x)]=-x2+2x+3,且φ(x)≥0.求φ(x)及其定义域和值域;
随机试题
天花粉的药用部分是
关于投资项目风险基本特征和识别原则,下列叙述正确的是()。
水闸中的铺盖按材料分,其类型有()。
投资连接保险中的投资风险由()承担。
C公司只生产一种产品。相关预算资料如下:资料一:预计每个季度实现的销售收入均以赊销方式售出,其中60%在本季度内收到现金,其余40%要到下一季度收讫,假定不考虑坏账因素。部分与销售预算有关的数据如表1所示:资料二:预计每个季度所需要的直接材料
较为符合我国国情和社区工作现状的社区工作模式是地区发展、社会策划和()三个实施模式。
共鸣
教育部公布的《国家教育事业发展第十二个五年规划》提出,推动各地制定非户籍常住人口在流入地接受()阶段教育的办法。
根据所给材料。回答问题。印刷组和装订组的成员来自以下七名员工——F,G,H,J,K,L和M,每个组的成员构成必须满足下列条件:(1)每个组至少有三名员工;(2)F和K不能在同一个组;(3)如果K在某个组,J也必须在这
InhermovieChocolat,filmmakerClaireDenisshuns______andattemptsinsteadtodepicteventsasrealisticallyaspossible.
最新回复
(
0
)