首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4维向量空间V的两个基分别为(Ⅰ)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3+α4,β3=α3+α4,β4=α4,求 在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量.
设4维向量空间V的两个基分别为(Ⅰ)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3+α4,β3=α3+α4,β4=α4,求 在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量.
admin
2021-02-25
86
问题
设4维向量空间V的两个基分别为(Ⅰ)α
1
,α
2
,α
3
,α
4
;(Ⅱ)β
1
=α
1
+α
2
+α
3
,β
2
=α
2
+α
3
+α
4
,β
3
=α
3
+α
4
,β
4
=α
4
,求
在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量.
选项
答案
设向量x在基(Ⅰ)和基(Ⅱ)下有相同的坐标,且坐标为x
1
,x
2
,x
3
,x
4
,则由坐标变换公式得 [*] 即 [*] 解得 [*] 于是得在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量为x=0α
1
+0α
2
+0α
3
+kα
4
,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/si84777K
0
考研数学二
相关试题推荐
证明n维向量α1,α2……αn线性无关的充要条件是
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
已知A是三阶矩阵,αi(i=1,2,3)是三维非零列向量,令α=α1+α2+α3。若Aαi=iαi(i=1,2,3),证明:α,Aα,A2α线性无关。
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ线性无关。
a,b取何值时,方程组有解?
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
随机试题
依据心智技能的实践模式,把主体在头脑中已建立起来的活动程序计划以外显的操作方式付诸执行,指的是()
“建安七子”之一王粲的辞赋代表作是()。
下列项目中,属于合并财务报表编制原则的有()
氨茶碱的保管方法是()。
关于儿茶酚胺与β受体结合后产生的效应,下列叙述错误的是
某医院16层住院楼,建筑高度为64m,地下一层为设备用房和冷库,一至十五层为病房楼,每层有2个护理单元,十六层为手术室。每层有一间避难间,避难间建筑面积为30m2。建筑内设置了自动喷水灭火系统和室内消火栓系统、室外市政消火栓,在水泵房配置了柴油机消防水泵和
某企业针对不同员工的薪酬结构如图5—3所示,其中基本工资根据数量化的岗位评价结果确定。请指出其中存在的问题,并说明为什么。
1,,()
Duringthe1980s,unemploymentandunderemploymentinsomecountrieswasashighas90percent.Somecountriesdidnot【21】____
Wouldyouknowhowtohelp?Everyyear,thousandsofdriversandpassengersdieinthefewminutesafteranautocollision.
最新回复
(
0
)