首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设V是向量组α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T所生成的向量空间,求V的维数和它的一个标准正交基.
设V是向量组α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T所生成的向量空间,求V的维数和它的一个标准正交基.
admin
2021-02-25
37
问题
设V是向量组α
1
=(1,1,2,3)
T
,α
2
=(-1,1,4,-1)
T
,α
3
=(5,-1,-8,9)
T
所生成的向量空间,求V的维数和它的一个标准正交基.
选项
答案
由于 [*] 显然α
1
,α
2
线性无关且α
3
=2α
1
-3α
2
,因此向量空间V的维数是2,且α
1
,α
2
为它的一个基.为了求V的一个标准正交基,先将α
1
,α
2
正交化,令β
1
=α
1
=(1,1,2,3)
T
, [*] 再将β
1
,β
2
单位化,得 [*] 故e
1
,e
2
就是V的一个标准正交基.
解析
本题考查由一组向量所生成的向量空间的概念和标准正交基的化法.由于V是由α
1
,α
2
,α
3
所生成的向量空间,所以V的维数等于向量组α
1
,α
2
,α
3
的秩,且α
1
,α
2
,α
3
的任一极大线性无关组便是V的一个基.
转载请注明原文地址:https://kaotiyun.com/show/Ei84777K
0
考研数学二
相关试题推荐
设矩阵且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[一1,一1,1]T,求a,b,c及λ0的值.
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设f(χ)在[a,b]上连续且单调增加,证明:∫abχf(χ)dχ≥∫abf(χ)dχ.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。求a的值;
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆。现将贮油罐平放,当油罐中油面高度b时(如图1—3—4),计算油的质量。(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
随机试题
下列建设工程的勘察、设计可以不经有关部门批准,直接发包的为()。
轻度持续发作的支气管哮喘患者应用糖皮质激素的原则,下列说法错误的是
恢复颌面正常形态的主要意义在于
当冲突规范所援引的外国法的内容无法查明时,我国的作法是__________。
()指为完成工程项目施工,发生于该工程施工前和施工过程中技术、生活、安全、环境保护等方面的非工程实体项目清单。
水泥路面改造加铺沥青面层通常可采用的方法有()。
背景 西南某一经济相对贫困、交通又不很发达的地区,已完成规定的勘探和部分矿井初步设计工作。其中新建一个1.2Mt矿井,因为井筒地质钻孔资料充分,且岩性条件也比较好,井筒施工工程很快就完成。根据井筒尚未到底前施工所揭示的岩层条件,设计单位选定了开拓水平的
泰勒原理所包含的四大问题是指()
跑步健身时应该注意调整速度,正确做法是()。
Eachandeveryoneofusisresponsibleforthegreenhousegaseswesendinourdailyactionsandchoices.【C1】______,combating
最新回复
(
0
)