首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x,令P=(x,Ax,A2x). 求|A+E|的值.
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax-2A2x,令P=(x,Ax,A2x). 求|A+E|的值.
admin
2021-02-25
53
问题
已知3阶矩阵A与3维列向量x,使x,Ax,A
2
x线性无关,且满足A
3
x=3Ax-2A
2
x,令P=(x,Ax,A
2
x).
求|A+E|的值.
选项
答案
由第一问知A与B相似,故A+E与B+E也相似,从而 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/dY84777K
0
考研数学二
相关试题推荐
设矩阵且|A|=一1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[一1,一1,1]T,求a,b,c及λ0的值.
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
证明n维向量α1,α2……αn线性无关的充要条件是
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f’’’(ξ)=2.
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
随机试题
HJ431埋弧焊剂是()型焊剂。
男性,24岁,主诉:牙龈自动出血伴牙龈疼痛5天。如果诊断为急性坏死性龈炎,此患者最可能的临床发现是
为了明确划分各会计年度的界限,年度终了,各种会计账簿都应更换新账。()
就年轻客户而言。投资与净资产比率保持在()属正常。
证券交易所根据国家关于证券公司证券自营业务管理的规定和证券交易所业务规则,对会员的证券自营业务实施日常监督管理的内容不包括( )。
某普通合伙企业举行合伙人会议表决对外投资事项,但合伙协议对该事项的表决办法未作约定。根据合伙企业法律制度的规定,下列关于该事项表决办法的表述中,正确的是()。
注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力、文字表达能力和贯彻执行能力的测试。2.作答参考时限:阅读材料30分钟,作答90分钟。3.仔细阅读给定资料,按照后面提出的“作答要求”依次作答。4.考生可以在本试卷
下列抗辩事由中,《侵权责任法》没有作出明确规定的是()
2,-3,-4
直接选择排序的平均时间复杂度为(17)。最好情况下时间复杂度为O(n)的排序算法是(18)。在最好和最花情况下的时间复杂度均为O(nlogn)且稳定的排序方法是(19)。
最新回复
(
0
)