首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b.证明:A可对角化.
admin
2021-11-15
79
问题
设n阶矩阵A满足(aE-A)(bE-A)=0且a≠b.证明:A可对角化.
选项
答案
由(aE-A)(bE-A)=0,得|aE-A|·|bE-A|=0,则|aE-A|=0或者|bE-A|=0.又由(aE-A)(bE-A)=0,得r(aE-A)+r(bE-A)≤n, 同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n, 所以r(aE-A)+r(bE-A)=n, (1)若|aE-A|≠0,则r(aE-A)=n,所以r(bE-A)=0,故A=bE. (2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE. (3)若|aE-A|=0且|bE-A|=0,则a、b都是矩阵A的特征值 方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个; 方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个. 因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/Tey4777K
0
考研数学二
相关试题推荐
求.
设f(lnx)==_______.
设f(x)是连续函数。求初值问题的解,其中a>0.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0﹥0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件。
设f(x,y),g(x,y)在平面区域D上连续,且g(x,y)≥0,证明:存在(ε,η)∈D,使得.
设z=z(x,y)满足.证明:.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解。
设A为m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()。
设向量组(I)a1,a2,a3;(II)a1,a2,a3,a4;(III)a1,a2,a3,a5,若向量组(I)与向量组(II)的秩为3,而向量组(III)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
已知y1*=e﹣2x+xe﹣x,y2*=2xe﹣2x+xe﹣x,y3*=e﹣2x+xe﹣x+2xe﹣2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个解。(Ⅰ)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0)=0,y’(0
随机试题
A.散发B.暴发C.隐性流行D.流行E.大流行非洲地区,伤寒发病率维持在10/10万左右,今年伤寒病人在某城发生20例,该城市30万人,这种情况属于
既能温中补虚,和里缓急;又可以调和阴阳,柔肝理脾的方剂是( )。
新生儿硬肿症,下列哪项是不正确的
甲房地产开发公司将一个商品房开发项目承包给乙公司施工。约定的合同总价为5000万元。合同签订后.乙公司又擅自将该项目转包给了不具施工资质的丙进行施工。后全部工程竣工并通过甲公司验收,甲公司支付了70%的款项,还有剩余30%款项没有支付.而乙公司收到这70%
工程洽商是施工过程中一种协调业主与施工单位、施工单位和设计单位洽商行为的记录,工程洽商一般由()提出。
北方公司为从事房地产开发的上市公司,2008年1月1日,外购位于甲地块上的一栋写字楼,作为自用办公楼,甲地块的土地使用权能够单独计量;2008年3月1日,购入乙地块和丙地块,分别用于开发对外出售的住宅楼和写字楼,至2009年12月31日,该住宅楼和写字楼尚
英国的社会保障体系划分为:社会救助、失业津贴和救济、免费教育、社会福利和个人生活的社会照顾等。()
Providingfirst-classserviceisoneofthetacticstheairlineadoptstoattractpassengers.
Ibecameinterestedinwritingatanearlyage.Sowhenmyfourth-gradeteachertoldmeabouta【C1】______writer’sconferencew
Americansbelievesomuchinmovingaheadthattheyare【C1】______researching,experimentingandexploring.Theytreattimeas
最新回复
(
0
)