首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
admin
2016-01-11
41
问题
设B是秩为2的5×4矩阵,α
1
=(1,1,2,3)
T
,α
2
=(一1,1,4,一1)
T
,α
3
=(5,一1,一8,9)
T
是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
选项
答案
由于B是秩为2的5×4矩阵,故方程组Bx=0解空间的维数为n—r(B)=4—2=2. 又α
1
,α
2
线性无关,所以α
1
,α
2
是解空间的基.先将α
1
,α
2
正交化,令[*]再单位化得[*]故e
1
,e
2
即是解空间的一个标准正交基.
解析
本题考查方程组解空间的基及Schmidt正交化.注意解空间的基即方程组的基础解系,不唯一.
转载请注明原文地址:https://kaotiyun.com/show/Ti34777K
0
考研数学二
相关试题推荐
设α=(1,a,1)T(a>0)是A-1的特征向量,其中A=,则a=________.
设n维实列向量α满足αTα=2,A,B,E均为n阶矩阵,且A(E-2ααT)=B,则()
设Aij为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B.求可逆矩阵P,使得PTAP=B.
设某商品的需求函数为Q=100-5P,其中Q,P分别表示需求量和价格,若商品需求弹性的绝对值大于1,则商品价格P的取值范围是________.
设,其中a,b均为常数,且a>b,b≠0,则()
设a1,a2,a3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,a1+a2=(2,0,-2,4)T,a1+a3=(3,1,0,5)T,则Ax=b的通解为________.
证明方程分别有包含于(1,2),(2,3)内的两个实根.
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵P-1AP属于特征值λ的特征向量是().
设f(x)连续,且∫0xtf(2x-t)dt=1/2arctanx2,f(1)=1,求∫12f(x)dx.
证明:当x>0时,arctanx+1/x>π/2.
随机试题
国际政治
支配旋后肌的是()
属于肿瘤病毒的是
某框架结构大型综合楼,长156m,宽50m,建筑高度为52m,地下三层,地上12层,耐火等级为一级。该建筑北面12m处有一栋高度为30m的住宅楼,耐火等级为二级;西面10m处有一栋建筑高度为9m的百货商店,耐火等级为三级。设置的环形消防车道在东侧与该建筑外
存在活跃市场的情况下,当日没有市价或现行出价,且最近交易日后经济环境没有发生重大变化的,应采用( )确定投资品种的公允价值。
任何人认为商标局初步审定并予以公告的商标不具有合法性,都可以在公告之日起的3个月内,向()提出商标异议。
香港、澳门问题的顺利解决,为解决国际争端和世界遗留问题提供了新的思路、新的范例。()
某企业原有职工110人,其中技术人员是非技术人员的10倍,今年招聘后,两类人员的人数之比未变,且现有职工中技术人员比非技术人员多153人。问今年新招非技术人员多少人?
下列设备组中,完全属于输入设备的一组是()。
QuestionandAnswerChoiceOrderThislectureisapartofaseriesoflecturesonsurveydesigning.Wetendtotalkaboutthe
最新回复
(
0
)