首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
admin
2022-10-12
46
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).证明:ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,F’(x)=f(x),∫
0
2
f(t)dt=F(2)-F(0)=F’(c)(2-0)=2f(c),其中0<c<2.因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M,m≤[f(2)+f(3)]/2≤M,由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[f(2)+f(3)]/2,即f(2)+f(3)=2f(x
0
),于是f(0)=f(c)=f(x
0
),由罗尔定理,存在ξ
1
∈(0,c)∈(0,3),ξ
2
∈(c,x
0
)∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)0.令φ(x)=e
-2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)∈(0,3),使得φ’(ξ)=0,而φ’(x)=e
-2x
[f"(x)-2f’(x)]且e
-2x
≠0,故f"(ξ)-2f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/ToC4777K
0
考研数学三
相关试题推荐
[*]
A、 B、 C、 D、 B
设有Am×n,Bn×m,已知En-AB可逆,证明En-BA可逆,且(En-BA)-1=En+B(En-AB)-1A.
设齐次线性方程组其中0≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
设(X,Y)的联合密度函数为(I)求常数k;(Ⅱ)求X的边缘密度;(Ⅲ)求当下Y的条件密度函数fY|X(y|x).
设f(x)∈C[a,b],在(a,b)内二阶可导.(Ⅰ)若f(a=0,f(b)0.证明:存在ξ∈(a,6),使得f(ξ)f’’(ξ)+f’2(ξ)=0;(Ⅱ)若f(a)=f(b)==0,证明:存在η∈(a,b),使得f’’(η)=f(η).
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
求曲线与x轴围成的区域绕x轴、y轴形成的几何体体积.
随机试题
[*]
正常人尿常规检查,不可能出现下列哪项结果
某企业只生产一种产品,按0.6的平滑系数预测4月份的销售量为18500件。该企业1~4月份的实际销售量与总成本资料如下:要求:(1)采用高低点法进行成本性态分析。(2)采用平滑指数法预测5月份的产销量。(3)根据成
甲公司采用出包方式交付承建商建设一条生产线。生产线建设工程于20×8年1月1日开工,至20×8年12月31日尚未完工。专门为该生产线建设筹集资金的情况如下:(1)20×8年1月1日,按每张98元的价格折价发行分期付息、到期还本的公司债券30万张
某镇为节省耕地、繁荣经济、加快小城镇建没,经镇政府研究决定,在紧靠老镇繁华地带的河边,改河道围沙滩100亩,进行商贸区扑发建设。由于土地造价低,又紧靠繁华地带,投资者热情很高,很快就引进了私营业者60多户到此区安家落户从事商贸经营活动。此商贸开发区启动营运
制发公文的目的和要求,一般是由()确定的。
使用VC6打开考生文件夹下的源程序文件modi2.cpp。完成函数fun(char*str,char*s)空出部分。函数fun(char*str,char*s)的功能是:将在字符串str中下标为偶数位置上的字符,紧随其后重复出现一次,放在一个新串s中,s
AHowtoUseaPaintingKnife使用画刀的方法Paintingwithaknifeisabitlikeputtingbutteronbreadandproducesquitea(1)resu
Inmanycountries,whenpeoplegivetheirname,theyrefertothemselvesusingtheirlastnameorfamilyname.IntheUnitedSt
Wedon’tknowwhentheroadwillbe(wide)______.
最新回复
(
0
)