首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
admin
2022-10-12
78
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).证明:ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,F’(x)=f(x),∫
0
2
f(t)dt=F(2)-F(0)=F’(c)(2-0)=2f(c),其中0<c<2.因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M,m≤[f(2)+f(3)]/2≤M,由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[f(2)+f(3)]/2,即f(2)+f(3)=2f(x
0
),于是f(0)=f(c)=f(x
0
),由罗尔定理,存在ξ
1
∈(0,c)∈(0,3),ξ
2
∈(c,x
0
)∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)0.令φ(x)=e
-2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)∈(0,3),使得φ’(ξ)=0,而φ’(x)=e
-2x
[f"(x)-2f’(x)]且e
-2x
≠0,故f"(ξ)-2f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/ToC4777K
0
考研数学三
相关试题推荐
[*]
[*]
A、 B、 C、 D、 B
设A为m×n矩阵,对于齐次线性方程组(Ⅰ)Ax=0和(Ⅱ)ATAx=0,必有()
求幂级数的收敛域D与和函数S(x).
抛掷两枚骰子,在第一枚骰子出现的点数能够被3整除的条件下,求两枚骰子出现的点数之和大于8的概率.
设B是n×n矩阵,A是n阶正定阵,证明:(1)r(BTAB)=r(B).(2)BTAB也是正定阵的充要条件为r(B)=n.
设A为m×n矩阵,证明:非齐次线性方程组Ax=b有解的充分必要条件是对齐次线性方程幺且ATy=0的任何解向量u均有uTb=u1b1+u2b2+…+umbm=0.
设A=E-aaT,其中a为n维非零列向量.证明:A2=A的充分必要条件是a为单位向量;
随机试题
集体主义是由中国革命道德的()的核心所决定的。
生产性项目总投资包括铺底流动资金和:
某单层双跨等高钢筋混凝土柱厂房。其平面布置图、排架简图及边柱尺寸如图1-18所示。该厂房每跨各设有20/5t桥式软钩吊车两台。吊车工作级别为A5级,吊车参见表1-1。已知,作用在每个吊车车轮上的横向水平荷载(标准值)为TQ,试问:在进行排架计算时,作
在专项预案的基础上,根据具体情况而编制的,针对特定的具体场所,通常是该类型事故风险较大的场所、装置或重要防护区域等所制定的预案,这种预案属于()。
实行金融期货交易的限仓制度目的有()。
资产负债表是()。
WBS的编码系统应该帮助项目成员()。
在数据库设计中用关系模型来表示实体和实体间的联系。关系模型的结构是()。
Completetheformbelow.WriteNOMORETHANTHREEWORDSforeachanswer.
A、Schoolsuseprivatedetectionservices.B、Teachersdiscussessaytopicswiththeirstudents.C、Teachersaskstudentstoturni
最新回复
(
0
)