首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
admin
2022-10-12
45
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).证明:ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,F’(x)=f(x),∫
0
2
f(t)dt=F(2)-F(0)=F’(c)(2-0)=2f(c),其中0<c<2.因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M,m≤[f(2)+f(3)]/2≤M,由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[f(2)+f(3)]/2,即f(2)+f(3)=2f(x
0
),于是f(0)=f(c)=f(x
0
),由罗尔定理,存在ξ
1
∈(0,c)∈(0,3),ξ
2
∈(c,x
0
)∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)0.令φ(x)=e
-2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)∈(0,3),使得φ’(ξ)=0,而φ’(x)=e
-2x
[f"(x)-2f’(x)]且e
-2x
≠0,故f"(ξ)-2f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/ToC4777K
0
考研数学三
相关试题推荐
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3,且α1+α2=则方程组AX=b的通解为________.
[*]
星形线(0>0)绕Ox轴旋转所得旋转曲面的面积为__________.
求函数的单调区间和极值,并求该函数图形的渐近线.
设向量组(Ⅰ):α1,α2,…,αm,组(Ⅱ):β1,β2,…,βn,其秩分别为γ1,γ2,向量组(Ⅲ):α1,α2,…,αm,β1,β2,…,βn的秩为γ3,证明max{γ1,γ2}≤γ3≤γ1+γ2.
设A,B,C是三个两两相互独立的事件,且P(ABC)=0,0
函数u=f(x+y,xy),则=________。
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A为n阶非奇异矩阵,a是n维列向量,b为常数,P=,Q=.证明:PQ可逆的充分必要条件是aTA-1≠b.
依题设,置信区间的长度为2[*]
随机试题
《海牙规则》的签署时间是()
下列哪项不是肝郁型不孕症的常见病证
(2010年司考试题)甲、乙等六位股东各出资30万元于2004年2月设立一有限责任公司,五年来公司效益一直不错,但为了扩大再生产一直未向股东分配利润。2009年股东会上,乙提议进行利润分配,但股东会仍然作出不分配利润的决议。对此,下列哪些表述是错误的?(
施工机械使用费的索赔不包括( )。
A公司发生如下业务:(1)从B公司购买一批材料,A公司将一张汇票背书转让给B公司作为付款,背书注明“货到后此汇票方生效”;(2)向C公司交付一张支票,C公司在转让前发现该支票未记录个别事项;(3)向银行申请开立临时账户。要求:根据资
下列有关不同行业和经济周期之间的关系说法中正确的是()。
纳税人到外县(市)销售自产应税消费品的,应于应税消费品销售后,回纳税人核算地或销售所在地申报缴纳消费税。()
【2015年辽宁鞍山.多选】关于教育应当根据人的气质差异因势利导的表述,正确的是()。
人民警察辞退,是指公安机关对不具备人民警察条件的人员,不适合在公安机关继续工作的人员,解除其与公安机关任用关系的一种人事行政管理措施。()
《劳动法》规定,因特殊原因需要延长工作时间的,在保障劳动者身体健康的条件下延长时间每日不得超过()小时。
最新回复
(
0
)