首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设B是n×n矩阵,A是n阶正定阵,证明: (1)r(BTAB)=r(B). (2)BTAB也是正定阵的充要条件为r(B)=n.
设B是n×n矩阵,A是n阶正定阵,证明: (1)r(BTAB)=r(B). (2)BTAB也是正定阵的充要条件为r(B)=n.
admin
2020-03-10
85
问题
设B是n×n矩阵,A是n阶正定阵,证明:
(1)r(B
T
AB)=r(B).
(2)B
T
AB也是正定阵的充要条件为r(B)=n.
选项
答案
(1)A是正定阵,存在可逆阵D, 使得A=D
T
D,r(B
T
AB)=r(B
T
D
T
DB)=r[(DB)
T
(DB)]=r(DB)=r(B). (2)必要性.A正定,且B
T
AB正定,由(1)知,r(B)=r(B
T
AB)=n,故r(B)=n. 充分性.A正定,r(B)=n,则B
T
AB=B
T
D
T
DB=(DB
T
)(DB),因r(B)=n,D可逆,故DB可逆,从而B
T
AB正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/hjD4777K
0
考研数学三
相关试题推荐
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
设A是3阶方阵,将A的第1列与第2列交换得B,再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为【】
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“PQ表示可由性质
设A是m×n矩阵,Aχ=0是非齐次线性方程组Aχ=b所对应的齐次线性方程组,则【】
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,则().
设在区间(一∞,+∞)内f(x)>0,且当忌为大于0的常数时有f(x+k)=,则在区间(一∞,+∞)内函数f(c)是()
设A,B是任两个随机事件,下列事件中与A+B=B不等价的是().
设常数k>0,则级数().
设函数f(x)在区间[1,+∞)上连续,若曲线y=f(x)与直线x=1,x=t(t>1)及x轴所围平面图形绕x轴旋转一周所得旋转体体积为,求f(x)满足的微分方程,并求满足初值的解。
求下列定积分:其中自然数n或m为奇数.
随机试题
关于磨耗描述哪项是不正确的
关于信用证支付,下列说法错误的是?()
根据《建设工程安全生产管理条例》,下列关于施工现场生产安全事故应急救援预案的规定,说法错误的是()。
以下符合借贷记账法记账规则的有()。
公司经济区位分析的主要内容包括()。Ⅰ.公司所处区位内的经济特色Ⅱ.公司所处区位内的自然条件Ⅲ.公司所处区位内的基础条件Ⅳ.公司所处区位内政府的产业政策
智慧以一定的知识为前提,在人的思考和实践中体现出来,但它本身是不稳定的、非规范性的,表现为某种洞幽烛微、触类旁通、融会贯通、举重若轻的能力。知识可以让人按照已有的方式思考和行动,智慧则使人立足已知探索未知,善于发现问题、提出问题、分析问题,进而自主地、创造
你市有小报报道称本市超市和农贸市场的大米重金属超标。有致癌的风险,造成市民的恐慌。经查证,该消息是虚假新闻。领导让你处理此事,请问你怎么办?
求
Healthimpliesmorethanphysicalfitness.Italsoimpliesmentalandemotionalwell-being.Anangry,frustrated,emotionally【C1
A、 B、 C、 A
最新回复
(
0
)