首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 从数1,2,3,4中任取一个数,记为X,再从1,2,…,X中任取一个数,记为Y,则P(Y=2)=___________.
[2005年] 从数1,2,3,4中任取一个数,记为X,再从1,2,…,X中任取一个数,记为Y,则P(Y=2)=___________.
admin
2019-05-08
38
问题
[2005年] 从数1,2,3,4中任取一个数,记为X,再从1,2,…,X中任取一个数,记为Y,则P(Y=2)=___________.
选项
答案
[*]
解析
解一 由题设知,X的概率分布为
而P(Y=2|X=1)=0,
P(Y=2|X=2)=1/2,P(Y=2|X=3)=1/3,P(Y=2|X=4)=1/4.
故由全概率公式得到
P(Y=2)=
(X=i)P(Y=2|X=i)=(1/4)(0+1/2+1/3+1/4)=13/48.
解二 将(X,Y)视为二维随机变量,先求其联合分布律,再求边缘分布P(Y=2).
P(X=1,Y=1)=P(X=1)P(Y=1|X=1)=(1/4)×1=1/4,
P(X=1,Y=2)=P(X=1)P(Y=2|X=0)=(1/4)×0=0,
同法可得 P(X=1,Y=3)=P(X=1,Y=4)=0.
P(X=2,Y=1)=P(X=2)P(Y=1|X=2)=(1/4)×(1/2)=1/8,
类似地,有P(X=2,Y=2)=1/8,P(X=2,Y=3)=P(X=2)P(Y=3|X=2)=0,
P(X=2,Y=4)=P(X=2)P(Y=4|X=2)=(1/4)×0=0.
P(X=3,Y=1)=P(X=3)P(Y=1|X=3)=(1/4)×(1/3)=1/12,
同法,可得 P(X=3,Y=2)=P(X=3,Y=3)=1/12, P(X=3,Y=4)=0.
P(X=4,Y=1)=P(X=4)P(Y=1|X=4)=(1/4)×(1/4)=1/16,
同法,可得 P(X=4,Y=2)=P(X=4,Y=3)=P(X=4,Y=3)=1/16.
容易写出(X,Y)的联合概率分布为
故
转载请注明原文地址:https://kaotiyun.com/show/ToJ4777K
0
考研数学三
相关试题推荐
级数().
求幂级数的收敛域.
设ξ和η是独立同分布的两个随机变量。已知ξ的分布律为P{ξ=i}=,i=1,2,3,又设X=max{ξ,η},Y=min{ξ,η}。(Ⅰ)写出二维随机变量(X,Y)的分布律;(Ⅱ)求E(X)。
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2)),其中σ是未知参数且σ>0,设Z=X一Y。(Ⅰ)求Z的概率密度f(z;σ2);(Ⅱ)设Z1,Z2,…,Zn为来自总体Z的简单随机样本,求σ2的最大似然估计量
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值。试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}。
(Ⅰ)设随机变量X服从参数为λ的指数分布,证明:对任意非负实数s及t,有P{X≥s+t|X≥s}=P{X≥t}(Ⅱ)设电视机的使用年数X服从参数为0.1的指数分布,某人买了一台旧电视机,求还能使用5年以上的概率。
讨论级数的敛散性.
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:
设an=,对任意的参数λ,讨论级数的敛散性,并证明你的结论.
设F(x)=∫01(1一t)ln(1+xt)dt(x>一1),求F’(x)(x>一1,x≠0)并讨论F’(x)在(一1,+∞)上的连续性.
随机试题
有关佝偻病发病机制中哪项是正确的
甲亢行甲状腺大部分切除术,术前准备应达到一定的标准,但不要求
重为W的人乘电梯铅垂上升,当电梯加速上升、匀速上升及减速上升时,人对地板的压力分别为p1、p2、p3,它们之间的关系为:
关于供需与政府政策的有关说法,错误的是()。
销售额作为消费税的计税依据,其价外费用不包括()。
(2017年)有限责任公司以资本公积转增资本,应当按照原出资者各自出资比例相应增加各出资者的出资金额。()
我国中学德育的任务与主要内容。
陈教授:中世纪初欧洲与东亚之间没有贸易往来,因为在现存的档案中找不到这方面的任何文字记录。李研究员:您的论证与这样一个论证类似:传说中的喜马拉雅雪人是不存在的.因为从来没有人作证亲眼看到这种雪人。这一论证的问题在于:有人看到雪人当然能证明雪人存在,但没人
(2012年下半年)项目章程发布的目标一般不包括(35)。
Yourusualteacherhaslosthisvoiceand_____Iamtakinghisplacetoday.
最新回复
(
0
)