首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
admin
2017-10-19
25
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P
-1
AP=A.
选项
答案
(Ⅰ)由已知条件有 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 因为α
1
,α
2
,α
3
线性无关,矩阵P可逆,所以P
1
-1
AP
1
=B,即矩阵A与B相似.由 |λE-B|=[*]=(λ-1)
2
(λ-4), 知矩阵B的特征值是1,1,4,故矩阵A的特征值是1,1,4. (Ⅱ)对矩阵B,由(E-B)x=0,得λ=1的特征向量β
1
=(-1,1,0)
T
, β
2
=(-2,0,1)
T
;由(4E-B)x=0,得λ=4的特征向量β
3
=(0,1,1)
T
. 那么令P
2
=(β
1
,β
2
,β
3
)=[*] 故当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(-α
1
+α
12
,-2α
1
+α
3
,α
2
+α
3
)时, P
-1
AP=A=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/TpH4777K
0
考研数学三
相关试题推荐
求
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
求二元函数f(x,y)=x2(2+y2)+ylny的极值.
设xy=xf(x)+yg(z),且xf’(z)+yg’(z)≠0,其中z=z(x,y)是z,y的函数.证明:
设A为可逆的实对称矩阵,则二次型XTAN与XTA—1X().
设A是3×4矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f"(0)以及极限
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T.问:(1)a,b为什么数时,β不能用α1,α2,α3,α4表示?(2)a,b为什么数时,β可用α1
随机试题
当窝沟封闭剂涂布于酸蚀牙釉质表面时,树脂材料即可渗入微孔结构,形成只能由偏光显微镜技术定量检查与相邻牙釉质区别层
关于医疗机构用血申请的管理描述正确的是
《素问.宣明五气论》提出久卧所伤的是
热原的基本性质不包括
目前地铁车站施工的主要工法有明挖法、暗挖法、盖挖法及盾构法。充分利用围岩的自承作用,要求初期支护具有一定刚度,以改造地质条件为前提.以控制地表沉降为重点,以格栅和喷锚作为初期支护手段,按照十八字原则进行设计和施工的施工方法,属于()。
在项目融资工作中,评价项目风险因素应在( )阶段进行。
当()时,证券公司及其营业部可以协助期货公司向客户提示风险。
直线与x轴交于点P,已知点P在圆x2+(y+2)2=25内,过点P的一条直径被点P分为两段,则较短的一段与较长的一段的比值为().
在20世纪30年代,人们已经发现了一种有绿色和褐色纤维的棉花。但是,直到最近培育出一种可以机纺的长纤维品种后,它们才具有了商业上的价值。由于这种棉花不需要染色,加工企业就省去了染色的开销,并且避免了由染色工艺流程带来的环境污染。从题干可推出以下哪项结论?(
Asawriter,heturnedoutthreenovelsthatyear.
最新回复
(
0
)