首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
admin
2017-10-19
48
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P
-1
AP=A.
选项
答案
(Ⅰ)由已知条件有 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 因为α
1
,α
2
,α
3
线性无关,矩阵P可逆,所以P
1
-1
AP
1
=B,即矩阵A与B相似.由 |λE-B|=[*]=(λ-1)
2
(λ-4), 知矩阵B的特征值是1,1,4,故矩阵A的特征值是1,1,4. (Ⅱ)对矩阵B,由(E-B)x=0,得λ=1的特征向量β
1
=(-1,1,0)
T
, β
2
=(-2,0,1)
T
;由(4E-B)x=0,得λ=4的特征向量β
3
=(0,1,1)
T
. 那么令P
2
=(β
1
,β
2
,β
3
)=[*] 故当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(-α
1
+α
12
,-2α
1
+α
3
,α
2
+α
3
)时, P
-1
AP=A=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/TpH4777K
0
考研数学三
相关试题推荐
f(x)=2x+3x一2,当x→0时().
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得∈f’(ξ)一f(ξ)=f(2)一2f(1).
求由曲线y=4一x2与x轴围成的部分绕直线x=3旋转一周所成的几何体的体积.
求曲线y=3一|x3一1|与x轴围成的封闭图形绕y=3旋转所得的旋转体的体积.
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且,证明(1)中的
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
求微分方程y"+4y’+4y=0的通解.
设X1,X2,…,Xn是取自均匀分布在[0,θ]上的一个样本,试证:Tn=max{X1,X2,…,Xn}是θ的相合估计.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
随机试题
加强进口物资的检验工作,维护国家利益,必须在合同规定的()期内完成。
下列汉字中,上中下结构的字有()
以下关于使用CT对比剂发生不良反应的描述正确的是
报检单位应在( )检验检疫机构办理备案登记手续。
注册会计师在了解被审计单位的目标、战略及相关经营风险时的下列考虑中,正确的是()。
赫茨伯格认为属于保健因素的需要有()。
2014年2月8日,我国南极泰山站正式建成并投入使用。该站的建成,为我国科学家开展长期持续的南极科学考察研究提供了良好条件,有利于拓展我国南极考察的领域和范围、拓展我国海洋事业发展的战略空间。这说明()。
下列关于简报的描述,错误的有()。
小张和小李二人在400米标准环形跑道起点处.同向分别以120米/分钟、40米/分钟的速度同时出发.小张每追上小李一次,小张的速度减少10米/分钟,小李增加10米/分钟。当二人速度相等时.则他们需要的时间是:
下列排序方法中,哪一种方法的总的关键码比较次数与记录的初始排列状态无关?
最新回复
(
0
)