首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. (Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P-1AP=A.
admin
2017-10-19
23
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
(Ⅰ)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使P
-1
AP=A.
选项
答案
(Ⅰ)由已知条件有 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B. 因为α
1
,α
2
,α
3
线性无关,矩阵P可逆,所以P
1
-1
AP
1
=B,即矩阵A与B相似.由 |λE-B|=[*]=(λ-1)
2
(λ-4), 知矩阵B的特征值是1,1,4,故矩阵A的特征值是1,1,4. (Ⅱ)对矩阵B,由(E-B)x=0,得λ=1的特征向量β
1
=(-1,1,0)
T
, β
2
=(-2,0,1)
T
;由(4E-B)x=0,得λ=4的特征向量β
3
=(0,1,1)
T
. 那么令P
2
=(β
1
,β
2
,β
3
)=[*] 故当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(-α
1
+α
12
,-2α
1
+α
3
,α
2
+α
3
)时, P
-1
AP=A=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/TpH4777K
0
考研数学三
相关试题推荐
求
证明:对任意的x,y∈R且x≠y,有.
设A,B为三阶矩阵,且特征值均为一2,1,1,以下命题:(1)A~B;(2)A,B合同;(3)A,B等价;(4)|A|=|B|中正确的命题个数为().
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
设f(x)连续,且F(x)=∫0x(x一2x)f(t)dt.证明:(1)若f(x)是偶函数,则F(x)为偶函数;(2)若f(x)单调不增,则F(x)单调不减.
设的三个解,求其通解.
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e—x一3e2x为特解,求该微分方程.
求矩阵A=的特征值与特征向量.
设Yt,Ct,It分别是t期的国民收入、消费和投资,三者之间有如下关系求Yt.
a为什么数时二次型x12+3x22+2x32+2ax2x3用可逆线性变量替换化为2y12一3y22+5y32?
随机试题
焊件的表面不能自然地、平整地展开摊平在一个平面上,这样的表面称为不可展表面。()
已知60钴源皮距(标)75cm,最大方野边长的1/2为10cm,所需斗篷照射野源皮距150cm,求斗篷野照射野边长1/2为
侵蚀性葡萄胎与绒癌的诊断,哪些是不正确的
帮助乳腺癌根治术后并带有引流管的病人翻身时,以下哪种做法是正确的()。
组织修复过程中,再生能力弱的组织是()。
ABC公司研制成功一台新产品,现在需要决定是否大规模投产,在不考虑通货膨胀的情况下,有关资料如下:(1)公司的销售部门预计,如果每台定价3万元,销售量每年可以达到10000台;销售量不会逐年上升,但价格可以每年提高2%。生产部门预计,变动制造成本每
下列各战役中,属于中国抗日战争中的著名战役的是:
缓刑执行是指对于被判处徒刑缓刑的罪犯,由公安机关交所在单位或者基层组织予以考察。()
有如下函数模板定义:templateT1FUN(T2n){returnn*5.0;}若要求以int型数据9作为函数实参调用该模板,并返回一个double型数据,则该调用应表示为
ThepresentprimeministerofAustraliais______
最新回复
(
0
)