首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性无关的函数y1,y2与y3均为二阶非齐次线性微分方程的解,C1和C2是任意常数,则该非齐次线性方程的通解是( )
设线性无关的函数y1,y2与y3均为二阶非齐次线性微分方程的解,C1和C2是任意常数,则该非齐次线性方程的通解是( )
admin
2020-03-01
62
问题
设线性无关的函数y
1
,y
2
与y
3
均为二阶非齐次线性微分方程的解,C
1
和C
2
是任意常数,则该非齐次线性方程的通解是( )
选项
A、C
1
y
1
+C
2
y
2
+y
3
.
B、C
1
y
1
+C
2
y
2
一(C
1
+C
2
)y
3
.
C、C
1
y
1
+C
2
y
2
+(1一C
1
—C
2
)y
3
.
D、C
1
y
1
+C
2
y
2
一(1一C
1
—C
2
)y
3
.
答案
C
解析
如果设该二阶非齐次线性微分方程的形式为
y”+p(x)y’+g(x)y=f(x).
由题意,y
1
,y
2
,y
3
均为其线性无关的解,则
y=C
1
y
1
+C
2
y
2
+y
3
是y"+p(x)y’+q(x)y=3f(x)的解,故(A)选项不正确.
y=C
1
y
1
+C
2
y
2
一(C
1
+C
2
)y
3
=C
1
(y
1
一y
3
)+C
2
(y
2
一y
3
)是方程对应的齐次方程的解,故(B)选项不正确.
y=C
1
y
1
+C
2
y
2
+(1一C
1
—C
2
)y
3
=C
1
(y
1
一y
3
)+C
2
(y
2
一y
3
)+y
3
,
其中C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)为齐次方程的通解,y
3
为原方程的一个特解,故(C)选项正确.
y=C
1
y
1
+C
2
y
2
一(1一C
1
—C
2
)y
3
=C
1
(y
1
+y
3
)+C
2
(y
2
+y
3
)一y
3
是y”+p(x)y’+g(x)y=(2C
1
+2C
2
—1)f(x)的解,
综上讨论,应选(C).
转载请注明原文地址:https://kaotiyun.com/show/TuA4777K
0
考研数学二
相关试题推荐
=_____________.
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=_______.
设A=(aij)n×n是n阶矩阵,Aij为aij的代数余子式(i,j=1,2,…,n).|A|=0,A11≠0,则A*X=0的通解是____________.
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij→ATA=E且|A|=1;(2)aij=-Aij→ATA=E且|A|=一1.
设曲线y=χn在点(1,1)处的切线交χ轴于点(ξ,0),求.
(93年)求微分方程(x2一1)dy+(2xy一cosx)dx=0满足初始条件y|x=0=1的特解.
设当0≤x≤1时,f(x)=xsinx,对于其他x,f(x)满足f(x)+k=2f(x+1),求常数k的值,使f(x)在x=0处连续.
设f(χ)=,求f(χ)的间断点,并分类.
求函数所有的间断点及其类型。
设函数在(一∞,+∞)内连续,且则常数a,b满足()
随机试题
慢性房颤最常见的并发症为
A、不致出现过敏现象B、柔软、滑润,无板硬、黏着不适感C、不会刺激皮肤引起皮炎D、能使疮口早日愈合E、富有黏性,能固定患部,使患部减少活动使用油膏的主要优点有
企业进行会计数字比较的方式包括()。
以下关于生活常识,说法不正确的是()。
旅游行业核心价值观中的“游客为本”与“服务至诚”之间是()的关系。
社会工作者小陈负责“关爱社区失独老人”服务项目,为了完成项目的各项工作,他招募了一批护理、法律等方面的志愿者参与到项目中,下列为这些志愿者准备的培训内容,符合要求的是()
国务院全体会议由国务院总理、副总理、各部部长、各委员会主任、审计长、秘书长和()组成。
近年来,伯来鸟的数量急剧减少,这种肉食鸟一般栖息于平原,如农场或牧场。一些鸟类学家认为这是由于一种新型杀虫剂导致伯来鸟赖以为食的昆虫急剧减少的结果。以下哪项中提出来的问题最不能帮助我们重新判断上述推理是否有效?
Thefollowingisamenuofamobile(移动的)phone.Afterreadingit,youarerequiredtofindtheitemsequivalentto(与......等同)th
Thetendencynowadaystowanderinwildernessesisdelightfultosee.Thousandsoftired,nerve-shaking,over-civilizedpeoplea
最新回复
(
0
)