设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:∈(0,1)使得

admin2019-03-21  35

问题 设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:∈(0,1)使得

选项

答案令F(x)=[*],由于 [*] 因此F(x)在[0,1]上连续,在(0,1)内可导. 由于f(0)=f(1)=0,由罗尔定理知,[*]∈(0,1)使f’(η)=0.因此,F(η)=F(1)=0,对F(x)在[η,1]上利用罗尔定理得,[*]∈(η,1),使得[*],即 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/tLV4777K
0

最新回复(0)